
 1

 Comparative Study of Rational and Mercury Functional Testing Tools

Kavitha Karthik Subbiah
Division of Computing Studies

Arizona State University, Polytechnic
kkarthi1@asu.edu

Abstract

The purpose of this project is to take an existing
Java web based application and perform functional
test on it by the IBM Rational Functional Tester and
the Mercury Quick Test Professional. The objective of
the project is to conduct a comparative study of these
two automated testing tools based on criteria such as
the effort involved with generating test scripts, ease of
modification of the test script and the ability to
accommodate new versions of the web applications.
The fundamental goal is to analyze the features
supported by these two functional testing tools that
aid in minimizing the resources in script maintenance
and increasing efficiency for script reuse.

 1. Problem Statement

 There are many challenges for testers of web
applications, particularly the creation and
maintenance of the test scripts. It is a fact that an
application undergoes modifications and
improvements over time. It is therefore crucial that
automated testing tools build robust scripts. If the
application developer changes properties of the object
or adds new objects or deletes old objects from the
application, the scripts might break and they need to
be rerecorded.

 It would be helpful to the testers if the automated
testing tools are capable of building scripts that are
flexible to changes in the application. Additionally it
should notify the tester about discrepancies found in
the application. If the application has undergone
changes, the script should continue without
intervention from the user and it should be possible for
the testers to reuse the scripts on the new build of the
application.
 This project uses the Rational Functional Tester and
the Mercury Quick Test Professional. It analyzes the

features supported by the two testing tools how well
they support script creation, maintenance and reuse.

2. Background and Related Work

Testing is important in the development of complex
business processes and software testing is a labor
intensive task. The choice (Manual Testing tool or
Automated Testing tool) depends on a number of
factors such as cost, time etc.

2.1. Automation for Regression testing

 Automated Testing tools are highly reliable
because it eliminates human errors. They also
drastically speed up the testing process because more
tests can be repeated with different test cases with in a
short period of time. This is time consuming when
done with a manual testing tool.

 When the application undergoes significant
changes over time, the number of tests also increases.
More tests have to be carried on the new build to find
bugs. This is true for a GUI based application
especially when the application developer changes the
user interface screen. In such a case, automated testing
tools are highly suitable to repeatedly test the same set
of operations which is time consuming when done
with the manual testing tool.

2.2. Manual Testing tool

 Automation is not always the best option. They are
not suitable for a short term perspective because the
initial investment in training is tremendous.
Automated testing tools are not suitable for an
unstable application. Such applications depend on real
time data and the tester cannot predict the expected
behavior. Automated testing tools also need technical
expertise. If this is not available, it may be time

 2

consuming to run when compared to a manual testing
tool.
 This project is oriented towards regression testing.
The Rational Functional Tester is used to test Java
applications, VB.Net applications and html
applications that run on Windows 2003 server or
Windows XP professional. The Rational Functional
Tester is the newest version of Rational Robot [1].
 The Mercury Quick Test Professional is used to test
Java applets, Java applications, VB.Net applications
that run on Windows XP professional or Windows
2003 server [2]. It is the newest version of Win
Runner. It is GUI based and a novice tester finds it
easy to work on.

3. Methodologies and Architecture

 The testing process consists of recording and playing
back the script. This records the action performed by
the user for the application under test. The initial step
is to configure the test environment. During recording,
various commands can be inserted to verify if the
application works as intended. Finally, the script can
be played back to replay the user actions. After the
application developer updates the application, the
script can be reused on the new build. The steps
followed in the testing process are shown in Figure 1.

Figure 1: Steps for record/playback

3.1. Enable environments for testing

 Initially the appropriate environment has to be
configured to test the application. The browser should
be enabled before recording to test HTML
applications.

 The Rational Functional Tester comes with Internet
explorer as the default browser. However, there is an
option for changing the default settings to add any
other browser.
 The application can be configured by loading the jar
file for the Java application or the batch file for the
windows application. JRE must be enabled for testing
Java applications.
 With the Mercury Quick test Professional, the
browser is enabled before recording and a URL is
provided for testing the html application. The tool
supports Internet Explorer and Mozilla Firefox
browsers.

3.2. Start Recording

 The Recording monitor will generate statements for
actions such as keystrokes and mouse clicks performed
by the user.
 The Rational Functional Tester has the recording
monitor to record the user actions. The recording
monitor contains buttons for inserting commands such
as verification points and data driven commands.
 The Mercury Quick Test Professional has a test
pane. It generates statements for actions performed by
the user.

3.3. Insert Commands

 During recording, various commands can be
inserted to verify if the application works as intended.
 The verification points can be inserted to verify the
data of the target objects and its properties (like
maximum length of the text field, contents of the
table, value of the input box etc). Different test cases
can be generated.
 The Rational Functional Tester has the data
verification point to check the data of the target
objects. The properties verification point can be used
to verify the standard properties. During recording,
data driven commands can be inserted to execute the
application with different test cases [Appendix B].
 The Mercury Quick professional has checkpoints to
check if the application works as intended. The
parameterizing test enables the application to perform
the same operations with different test cases
[Appendix B].

3.4. Stop Recording

 Insert Commands

 Stop Recording

Start Recording

 Playback the scripts

 View Results

Application
Change

Enable environments for testing

 3

 After recording, the scripts are generated in the
editor and the graphical objects in the application are
stored in the object map/repository.

3.4.1. Scripts

 The Rational Functional Tester generates scripts in
the Java editor. Scripts are Java statements and they
can be easily edited and executed using a standard
Eclipse environment. [Appendix A].
 The Mercury Quick Test Professional generates VB
scripts. It has a test pane which contains two views.
The Keyword View displays the graphical
representation of the objects for the application
under test [Appendix A]. The Expert view displays
VB scripts.

3.4.2. Test Objects

 The objects for the application under test have to be
stored in the object map/object repository.
 The Rational Functional Tester uses the test object
map to represent graphical objects for the application
under test [Appendix D].
 The Mercury Quick Test Professional uses the object
repository to represent graphical objects in the
application [Appendix D].

3.5. Application Change

 The application developer may introduce some
significant changes in the application. If the same
script is used on the new version, the script could
break depending on the changes. However, automated
testing tools have smart identification features which
enable the script to accommodate many changes in the
application.
 The Rational Functional Tester has a smart
recognition feature. It makes the scripts more flexible
to changes. The Mercury Quick Test Professional has
a smart identification mechanism which enables the
script to be reused on the new build.

3.6. Playback the scripts

 When the script is played back, it replays the user
actions performed during recording. After playback,
the results are generated in the test results window. It
shows the pass/fail status for the application under
test. It also displays the verification point results.
 The Rational Functional Tester uses HTML/text log
to display the results [Appendix C].

 The Mercury Quick Test Professional has the Test
result window which shows the pass/fail status
[Appendix C].

4. Validation and Analysis

 A Java web based application was used for testing.
The application was hosted on the Tomcat web server.
The web application consists of the following web
pages:
 a) Login.html: It prompts the user with the log in
screen
 b) Index.jsp: It allows the user to select the book
and enter the quantity.
 c) Purchase.jsp: It displays the user selected
quantity and the book name in the table. It prompts
the user for the credit card information.
 d) Confirm.jsp: It confirms the purchase approval.
 The browser (Internet Explorer) is enabled
before testing. The URL for the application is given in
the record settings. During recording, various
commands are inserted to check the expected behavior
of the application. Also commands are inserted to test
the application with a variety of data.

4.1. Insert Commands

 First the application is tested to see if it works as
intended. The verification points can be inserted
during/after recording to verify the state of the test
objects. It can be used to confirm the state of the
application across new builds.

4.1.1. Verification Points

 The Rational functional tester supports two types of
verification points [1]. Data verification point can be
used to check the target object’s data. Data verification
can be used to check the data which can be in any
form (table, list, tree, menu, state). Properties
verification points can be used to verify properties like
the contents in the table, value of the test object, name
of the input text field, maximum length that a text box
can accept etc. If the verification point fails, it opens
the verification point comparator window showing the
expected and the actual values. Failures are displayed
in red. If the verification point passes, it opens the
verification point editor. The following describes the
results of my test. The Data Verification point was
inserted in the “index.jsp” to verify the list by
selecting multiple books. When the script was played
back, the verification point failed because none of the

 4

books were selected. During playback, the books that
were selected using the shift keys did not work. This
can be eliminated by modifying the preference settings
for the playback. So, the playback preference settings
were modified to slow down the delays for the “Delay
before key up” and “Delay before key down”.
However, this was also throwing an exception. A radio
button was added in the application to replace the
multiple select capability and the user was allowed to
select only one book. Finally, the verification point
passed when one book was selected from the radio
group. The Data verification point was inserted in the
“purchase.jsp” to verify the table contents. The
Verification point passed. The user selected quantity
and book name were displayed in the verification
point editor. The properties verification point was
inserted in the “purchase.jsp” to test the maximum
length of the data (card number) in the text box. The
verification point passed. It accepted sixteen
characters for the text field.

 4.1.2. Checkpoints

 The Mercury Quick Test Professional uses
checkpoints to verify the expected behavior of the
application. It supports different check points.
Standard check points are used to verify the object’s
standard properties such as value and name. Page
check points are used to check number of links in the
application and the time it takes to load the webpage.
The text checkpoint is used to verify if the correct
string is displayed correctly in the application. The
table check point is used to verify the contents of the
table [4].
 The same test was performed with the Mercury
Quick Test Professional tool. Multiple books were
selected in the “index.jsp”. After recording, the
standard checkpoint was inserted in the Book list to
verify the selected value. During playback, the
verification point passed. It displayed multiple books
that were selected. Thus the books selected using the
shift keys worked with the Mercury Quick Test
Professional tool. The table check point was inserted
to verify the table contents. It passed for the
application. The text check point was inserted in the
“purchase.jsp” to ascertain that it is for the correct
customer. When the script was played back, the
checkpoint passed for the application displaying the
correct customer name.
 Next, the application was executed with different
test cases.

4.2. Execution with different test cases

 The application was tested with multiple sets of
input data. Instead of recording multiple tests to test
multiple sets of input data, it is possible to make the
script access the different sets of input data from the
external source like data table, data pool. The
verification point was inserted to verify if the
application works properly with different sets of input
data. With this feature, the data is not hard coded in
the script. Since the data is separated from the script,
it can be changed without affecting the script. New
test cases can be added whenever it is needed.

4.2.1. Data Pool

 The Rational Functional tester uses the “data driven
test” for the generation of different test cases. The
following steps were carried out to generate different
test cases. During recording, the data driven
commands were inserted in the “index.jsp” and
“purchase.jsp”. Many records were added to enter a
variety of input data for the books and quantity in the
datapool. Each record represents one test case. The
expected output values (Unit Cost and the Total Cost)
were manually entered in the data pool. The
verification point was inserted in the “purchase.jsp” to
verify the table contents when different inputs were
given for the quantity and the books. The verification
point was created with a data pool reference instead of
a literal value. So, when the script was played back,
the script accessed one record from the test datapool.
It supplied the input values to the variables in the
script. Since the verification point referenced the data
pool, it used the variable data as the baseline for
comparison. Finally, the log displayed the verification
point pass/fail status. The verification point passed for
all the test cases.

4.2.2. Parameterizing the Tests

 The Mercury Quick Test Professional uses the
“Data table parameters” to generate different test
cases. The test pane generates the script in the
keyword view and the Expert view. The following
steps were carried out to generate the different test
cases. The value in the keyword view was configured
to replace the constant value with the parameter. The
value field accesses the input data from the data table.
The values for the quantity and the book names were
configured as the parameter values and different input
values were entered in the datatable. In the Rational

 5

Functional Tester, the output values for the Unit cost
and the Total Cost were manually entered in the
datapool. But with QTP there was an option for
generating the output value. It was enabled in the data
table. The output value for the Unit Cost and the Total
Cost were generated automatically for the multiple
books. The check point was inserted to check the
contents of the table for the different books and the
different quantities. The expected value of the test
object “Book” was modified to match its value
resulting from the parameter option. When the script
was played back, the test result window generated the
Runtime Data table. It showed all the input values
given in the data table and the output values (Unit
Cost and Total Cost) generated from the application
.The check point passed for all the iterations of the
application.

4.3. Scripts

 After recording, the scripts were generated in the
editor. Scripts are generated for the actions performed
by the user for the application under test. Each step in
the script represents a user action such as mouse clicks
or keystrokes.
 The script includes the method calls on the test
objects, statements that perform the verification point
and statements that create the data driven tests
[Appendix A].
 The Rational Functional Tester generated the scripts
which are Java statements. All the graphical objects in
the application are stored in the Test Object Map.
Scripts contain references to those test objects.
 The Mercury Quick Test Professional generated VB
scripts. The keyword view in the test pane displays
each step performed by the user in a table format
[Appendix A]. It includes the items (test objects),
operations (method calls on the test objects) and
values for the application under test. It also generates
the auto documentation for each step performed by the
user. It was easy for novice testers to work with the
keyword view. The expert view generates the VB
scripts for the application under test. Once the testers
gain technical expertise, they can write their own VB
script to perform the test for the application [4].

4.4. Test Objects

 The graphical objects in the application under test
are stored in the test object map/Object repository.
 The Rational Functional Tester uses the test object
map to represent the graphical objects in the

application. It stores the test objects in a hierarchical
manner. The test objects contain the recognition and
administrative properties. Each property has a weight
ranging from 0-100 in its recognition properties. The
Rational Functional Tester tool assigns the recognition
score for each property it finds during the playback.
The greater the recognition score, the less exact is the
match between the recorded object and the object
found during playback. If the score is within the
threshold in the functional Tester preferences then it is
not reported in the log. If the score is greater than the
warning threshold then it is reported in the log.
 The Mercury Quick Test Professional uses the
Object repository to represent the graphical objects.
Object repository stores all the test objects in a tree.
When the target object was clicked in the tree, it
shows the corresponding object’s description
properties as shown in Appendix D. It recognizes the
objects using the objects description properties (name,
html tag).If the QTP can not identify the objects using
the descriptive properties objects then it uses the
assistive properties.

4.5. Script Reuse and Script Maintenance

 The application was modified by changing some
properties of the objects. New objects were added in
the application and the same script was used on the
new build.

4.5.1. Changing the Properties of the old objects

 The dynamic content of the application was
changed. The submit buttons in the “index.jsp” was
changed from “Submit query” to “Submit the query”
and purchase button in the “Purchase.jsp” was
changed from “Purchase” to “purchase”. The same
script was used to test the application after these
changes.
 With the Rational Functional Tester, the script
slowed near the “Submit the Query” and the
“purchase” button. The script was looking for the old
objects, but the objects had been changed. When the
log was generated, it displayed the warning message
as “Object Recognition is weak” as shown in Figure 3.

 Figure 3: Warning Message

 6

 The Rational Functional Tester assigned the
recognition score for each property of the test objects it
finds during playback. The value field in the
recognition properties of the submit buttons were
changed. Since one property had been changed for the
submit buttons (Submit Query and the Purchase), it
generated a warning message in the log. The
properties verification point was inserted in the submit
button and the value field was selected. The
verification point failed for the application. There
were three options to fix this:

4.5.1.1. Using the Verification Point comparator

 The verification point failed and the verification
point comparator was opened. It displayed the actual
value and the expected value. The verification point
comparator was updated to load the difference by
editing the actual value. When the script was played
back, it passed with no warnings.

4.5.1.2. Using the Test object Map

 The application containing the new object was
selected to run. The new object (Submit the Query)
was chosen in the “index.jsp”. The new object was
inserted in the test object map. The old object
(button_submitQuery submit) was selected and it was
dragged into the new object (button_submittheQuery)
using the “Unify Test Object Wizard”. Both the old
and the new object properties were listed. When the
script was played back, it passed with no warnings.

4.5.1.3. Using Regular Expressions

 Regular expressions can be used to allow the script
to run on more than one version of the application.
 The test objects (button_submittheQuery) and the
(button_Purchsesubmit) was selected .The value field
in the recognition property was changed from “Submit
the Query” to “Submit.* Query” as shown in Figure: 4
and “Purchase” to “[pP] urchase”, so that it can be run
on several versions of the application.

 Figure 4: Regular Expressions

 The same test was carried with the Mercury Quick
Test Professional. The submit button was changed
from “Submit Query” to “Submit the Query” and the
purchase button was changed from “Purchase” to
“purchase”. When the script was played back the test
result window generated the warning message for the
“Submit the Query” button .But the change
“Purchase” to “purchase” did not generate the
warning message as with the Rational Functional
Tester. The test objects are case insensitive in the
Mercury Quick Test Professional tool.
 In the object Repository, the “submit Query” object
was selected and its name was changed in its
description properties to “Submit the Query”. When
the script was played back, the test result passed with
no warnings.

4.5.2. Adding a new Object

 A reset button was added in the “index.jsp”. A
new object must be added to the test object map/Object
Repository and to the script if a decision to add has
been made. With Rational Functional Tester, the new
object must be added to the test object map. A “Reset”
button was selected from the “index.jsp” in the new
application and it was added to the test object map. To
add the new object to the script, the new object and the
corresponding method calls were inserted in the script.
After adding the new object in the script and in the
test object map, the same script was reused.
 With Mercury Quick Test Professional, a new object
must be added to the Object Repository and to the
script. Initially, a reset button was added in the object
repository and its description properties were listed.
The method calls for the new object were inserted in
the keyword view of the test pane and the same script
was reused.

4.5.3. Changing the User Interface Screen

 The user interface screen was changed in the
“index.jsp” by changing the location of the “Name”,
“Quantity” and the books were changed and tested.
The same script was used and the script did not break
.The two tools does not depend on the screen
coordinates to find the test objects, it uses the
recognition and the mandatory properties to ascertain
the test objects.
 Therefore the script can be reused even when the
user interface screen changed.

4.5.4. Calling another script

 7

 Tests can be divided into multiple actions.
Sometimes identical activities are to be repeated,
instead of recording multiple times, the script can call
another script to avoid duplication of tests.
 The Rational Functional Tester has script support
commands to call one script from another script.
 The Mercury Quick Test Professional permits to
divide the tests into multiple actions. Call to an
existing action may be performed with in a
script.”Login.html” page was introduced in the
application and tested with both the tools. The old
script was called to repeat the identical activities. It
requires technical expertise to work with Mercury
Quick Test Professional to call the existing action in
the same script.
 As a novice tester, I performed the testing on a
Java web based application with the tools for a period
of three months and observed the features supported
by these tools in the script creation, maintenance and
reuse.
 The major strengths and weaknesses of the tools
are highlighted as follows. Mercury Quick Test
Professional is easy for a novice tester to work with. It
is GUI based. With the Rational Functional Tester, the
multiple select feature using shift keys did not work.
The output values have to be manually entered for the
data pool feature of the Rational Functional Tester.
With Mercury Quick Test Professional the output
values are automatically generated at runtime.
Rational Functional Tester is cheaper than Mercury

Quick Test Professional. The results of all the tests
executed with both the tools are rated as shown below
and given in the table.

����� Excellent
���� Very Good
��� Good
�� Satisfied
� Unsatisfied

 8

Results

S.NO Criteria Rational
Functional
Tester

Mercury
Quick Test
Professional

Reason

1. Generation of
Scripts

����� ��� The Rational Functional tester is capable of generating VB
scripts and Java scripts (Java statements). It is Eclipse based.
The Mercury Quick Test Professional generates only VB
scripts.

2. Scripts �� ����� Mercury Quick Test Professional is GUI based. Auto
documentation is created for each step performed by the user
(in the table) in the keyword view and a novice tester finds
the tool easy to work with. The Rational Functional Tester
requires some programming experience.

3. Playback of the
scripts

� ����� User actions performed during recording are replayed during
playback. Multiple values selected using the shift keys did
not work with the Rational Functional Tester. However,
multiple select capabilities worked with Mercury Quick Test
Professional.

4. Feature to generate
different test cases

��� ����� The Rational Functional Tester has data driven commands to
generate different test cases. The Mercury Quick Test
Professional uses “parameterizing the tests” to generate test
cases. However, the output values have to be manually
entered with the Rational Functional Tester. With Mercury
Quick Test Professional the output values are generated
automatically.

5. Cost ����� �� Rational Functional Tester is cheaper than Mercury Quick
Test Professional.

6. Accommodation of
new versions of
applications

����� ��� The two tools have features that allow one script to call
another script and identical activities are not repeated. This
process is easily accomplished with the Rational Functional
Tester compared to the Mercury Quick Test Professional
which requires technical expertise.

7. Script Reuse ����� ����� The tools have smart recognition features which permit reuse
of the script on a new build.

8. Test Results ��� ����� The test results are displayed in the html/text log for the
Rational Functional Tester. But the Mercury Quick Test
Professional displayed the results in the form of a tree in the
test result window. When the target object was selected, the
tool gives a visual representation of the snapshot (captured
during recording) in the screen recorder.

 9

5. Conclusion:

 The project successfully evaluated the two tools
and verified the expected behavior of the application.
The verification point failed with the Rational
Functional Tester when multiple books were
selected. Hence, the application had to be modified
and the radio button was added to replace the
multiple select capabilities. However, the application
worked with the Mercury Quick Test Professional.
The application was tested with different test cases
using the data table feature of Mercury Quick Test
Professional and the datapool feature of the Rational
Functional Tester. The changes were introduced in
the application and the same script was reused to run
on the new build and successfully tested.
 Appendix A shows the Rational Functional Tester
IDE and the Mercury Quick Test Professional IDE.
 Appendix B shows different test cases generated by
datapool feature of Rational Functional Tester and
different test cases generated by Data table feature of
Mercury Quick Test Professional.
 Appendix C shows the html log generated by
Rational Functional Tester and the test results
window generated by Mercury Quick Test
Professional.
 Appendix D shows the Test object Map (represents
the test object) of Rational Functional Tester and the
Object Repository of Mercury Quick Test
Professional.

6. Acknowledgements

I would like to thank my chair Dr.Harry
Koehnemann for his continuous support and

guidance. This was instrumental to the success of
this project. I would like to also thank my committee
members Dr.Kevin Gary and Dr.Bruce Millard for
their valuable feedback.

7. References

[1] IBM Rational Software, “Essentials of IBM Rational
Functional Tester, Java Scripting, v.6.1”, IBM
Corporation, Jan 2005.

[2]Hewlett Packard Development Company, L.P.
“Mercury
QuickTestProfessional”.(2007).http://www.mercury.com/u
s/products/qualitycenter/functional-testing/quicktest-
professional/ (11 Mar.2007).

[3]Marty hall and Mary Brown, “Core Servlets and Java
Server pages”, Sun Microsystems Press/Prentice Hall PTR

 [4]IBM Corporation. “Rational Functional Tester”.
http://www-
306.ibm.com/software/awdtools/tester/functional/index.ht
ml (25 Jan.2007).
.

 10

APPENDIX A:

 Rational Functional Tester IDE (Scripts are Java statements)

}

 11

Mercury Quick Test Professional IDE (Keyword View)

 12

APPENDIX B:

 Rational Functional Tester (Data Pool)

 Mercury Quick Test Professional (Parameterizing the tests)

 13

APPENDIX C:

Test Results for the Rational Functional Tester (HTML Log)

 14

Test Result Window for Quick Test Professional

 15

Appendix D:

Rational Functional Tester (Test Object Map to represent the graphical objects in the application)

 16

Mercury Quick Test Professional

(Object Repository to represent the graphical objects for the application)

