
Chapter 07 Scripting Quicktest Professional Page 1

Dani Vainstein Working with Files Page 1 of 112

SCRIPTING EXCEL ... 2

CREATING AND TERMINATING AN INSTANCE OF MS-EXCEL ... 2
RETURNING A COLLECTION OF DISK DRIVES... 3
BINDING TO A SPECIFIC DISK DRIVE ... 3
ENUMERATING DISK DRIVE PROPERTIES... 4
ENSURING THAT A DRIVE IS READY.. 4

MANAGING FOLDERS... 5
BINDING FOLDERS .. 5
VERIFYING THAT A FOLDER EXISTS .. 6
CREATING A FOLDER .. 6
DELETING A FOLDER... 7
COPYING A FOLDER AND ITS CONTENTS ... 8
MOVING A FOLDER AND ITS CONTENTS .. 9
RENAMING A FOLDER ... 10
ENUMERATING FOLDER PROPERTIES... 11
MANAGING FOLDER ATTRIBUTES ... 12

MANAGING FILES .. 18
BINDING TO A FILE ... 18
VERIFYING THAT A FILE EXISTS ... 19
DELETING A FILE .. 20
COPYING A FILE.. 21
MOVING A FILE... 22
RENAME A FILE .. 23
MANAGING FILE PROPERTIES.. 23

READING AND WRITING TEXT FILES .. 27
READING TEXT FILES.. 30
WRITE TO TEXT FILES... 34

MANAGING FILES AND FOLDERS USING WMI.. 36
COMPARING WMI AND THE FILESYSTEMOBJECT.. 37

MANAGING FILES AND FOLDERS USING THE WINDOWS SHELL OBJECT 40
FOLDERS AND FOLDERS OBJECT... 41

WIN32_DIRECTORY CLASS ... 41
THE FILESYSTEMOBJECT OBJECT.. 51

THE FSO OBJECT MODEL ... 51
PROGRAMMING THE FILESYSTEMOBJECT ... 53
THE FILESYSTEMOBJECT PROPERTIES AND METHODS ... 53
DRIVES COLLECTION OBJECT ... 74
DRIVE OBJECT .. 75
FOLDERS COLLECTION OBJECT ... 80
FOLDER OBJECT.. 83
FILES COLLECTION OBJECT... 91
FILE OBJECT ... 93
TEXTSTREAM OBJECT..101

Q&A ...106
HOW TO ENUMERATE FOLDERS AND FOLDER PROPERTIES? ...106
HOW TO ENUMERATE ALL THE FOLDERS ON A COMPUTER?...108
HOW TO ENUMERATE THE SUBFOLDERS OF A FOLDER?..108
HOW TO RENAME ALL THE FILES IN A FOLDER?...109

Chapter 07 Scripting Quicktest Professional Page 2

Dani Vainstein Working with Files Page 2 of 112

CAN I READ A TEXT FILE FROM THE BOTTOM UP?..109
HOW CAN I COUNT THE NUMBER OF LINES IN A TEXT FILE?...110
HOW CAN I COUNT THE NUMBER OF TIMES A WORD APPEARS IN A LOG FILE?110

APPENDIX 5.A ...111

Scripting Excel

Drives, files and folders are the lifeblood of any organization; this makes file
system administration one of the most important responsibilities assigned to

system administrators. Of course, file system administration is also one of the
more difficult responsibilities to carry out, simply because files and folders are

scattered on multiple hard disks and multiple computers throughout the
organization. Scripts can help make file system management much easier,

particularly when the files and folders managed, are located on remote computers.

Creating and Terminating an Instance of MS-Excel

Let's start with the simplest possible script, one that creates an instance of
Microsoft Excel and then adds a new workbook to that instance:

Set oXlsApp = CreateObject("Excel.Application")

oXlsAp.Workbooks.Add

By running the preceding script, you really did create a brand-new instance of

Microsoft Excel. Press CTRL-ALT-DEL and take a look at the Processes tab in the

Task Manager. You should see an instance of Excel.exe

By default, any time you use a script to create an instance of a Microsoft Office

application, that application runs in a window that is not visible on screen. Excel is

there; you just can't see it

This is a real, live instance of Microsoft Excel. As you'll soon see, you can
programmatically read data from it or, for that matter, do pretty much anything

else you can do with Excel.

The only functionality you lose when Excel runs in an invisible window is the ability
to type something on the keyboard and have the application reacts to those

keystrokes. And that's what makes the default behavior useful.

Suppose you were running a script that created a report using Excel, and suppose
Excel was visible the whole time the script was running. A user (even yourself)
could accidentally hit a key on the keyboard and ruin the entire report. A user

(even yourself) could simply close Excel, ruining not only the report, but also
causing your script to blow up. (After all, the script will be trying to send
commands to an instance of Excel that no longer exists.) By running Excel

invisibly, you can sidestep problems like that.

What if you would like Excel to be visible on screen? No problem just set the

Visible property to True.

Set oXlsApp = CreateObject("Excel.Application")

oXlsAp.Workbooks.Add

oXlsApp.Visible = True

Chapter 07 Scripting Quicktest Professional Page 3

Dani Vainstein Working with Files Page 3 of 112

Wait 10

MsgBox "The script is now complete."

What happens when you run this script? Well, an instance of Excel will be created,
and it will appear on your screen. There will be a 10-second pause, and then a
message will appear telling you that the script is now complete. When you click

OK, the script will immediately terminate (as soon as Microsoft® VBScript reaches

the end of a script, the script process terminates).

Returning a Collection of Disk Drives

Before you can manage disk drives on a computer, you need to know which disk
drives are actually available on that computer. The FileSystemObject allows you

to return a collection of all the drives installed on a computer, including removable

drives and mapped network drives (in other words, any drive with a drive letter).

To return this collection, create an instance of the FileSystemObject, and then
create a reference to the Drives property. After the collection has been returned,
you can use a For Each loop to iterate through the collection.

For example, the following script returns a collection of all the drives installed on a

computer and then echoes the drive letter for each drive in the collection.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set colDrives = oFSO.Drives

For Each oDrive in oDrivesCol

 MsgBox "Drive letter: " & oDrive.DriveLetter

Next

Binding to a Specific Disk Drive

If you know in advance which drive you want to bind to (for example, drive C, or
the shared folder \\accounting\receivables), you can use the GetDrive method to

bind directly to the drive. This allows you to retrieve information for a specific
drive, without having to return and iterate through an entire collection.

The GetDrive method requires a single parameter: the driver letter of the drive or
the UNC path to the shared folder. To specify a drive letter, you can use any of

the following formats:

 C

 C:

 C:\

The following script creates an instance of the FileSystemObject, uses the

GetDrive method to bind directly to drive C, and then echoes the amount of

available space on the drive.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oDrive = oFSO.GetDrive("C:")
MsgBox "Available space: " & oDrive.AvailableSpace

Chapter 07 Scripting Quicktest Professional Page 4

Dani Vainstein Working with Files Page 4 of 112

Enumerating Disk Drive Properties

The Drives collection is typically used for inventory or monitoring purposes; as a
system administrator, you need to know what drives are available on a computer,

as well as details such as the drive serial number and the amount of free space on
the drive. After you have returned a drives collection or an individual drive object,

you can retrieve any of his properties.

To enumerate the drives installed on a computer, create an instance of the

FileSystemObject, create a reference to the Drives property, and then use a For

Each loop to iterate through the set of drives. For each drive in the collection, you
can echo any or all of the individual drive object properties

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oDrivesCol = oFSO.Drives

For Each oDrive in oDrivesCol

 sOut = sOut & "Available space: " & oDrive.AvailableSpace & vbCrLf

 sOut = sOut & "Drive letter: " & oDrive.DriveLetter & vbCrLf

 sOut = sOut & "Drive type: " & oDrive.DriveType & vbCrLf

 sOut = sOut & "File system: " & oDrive.FileSystem & vbCrLf

 sOut = sOut & "Free Space: " & oDrive.FreeSpace & vbCrLf

 sOut = sOut & "Is ready: " & oDrive.IsReady & vbCrLf

 sOut = sOut & "Path: " & oDrive.Path & vbCrLf

 sOut = sOut & "Root folder: " & oDrive.RootFolder & vbCrLf

 sOut = sOut & "Serial number: " & oDrive.SerialNumber & vbCrLf

 sOut = sOut & "Share name: " & oDrive.ShareName & vbCrLf

 sOut = sOut & "Total size: " & oDrive.TotalSize & vbCrLf

 sOut = sOut & "Volume name: " & oDrive.VolumeName & vbCrLf

Next

Available space: 10234975744

Drive letter: C

Drive type: 2

File system: NTFS

Free space: 10234975744

Is ready: True

Path: C:

Root folder: C:\

Serial number: 1343555846

Share name:

Total size: 20398661632

Volume name: Hard Drive

Ensuring That a Drive is Ready

The previous script has a potential flaw in it: If there is no floppy disk in the floppy

disk drive that is being checked or no CD in the CD-ROM drive, the script will fail
with a "Drive not ready" error. Drives that are not ready create problems for
scripts that use the FileSystemObject; although the FileSystemObject can

identify the existence of those drives, your script will fail if it attempts to access

disk drive properties such as AvailableSpace or FreeSpace.

If a drive is not ready (which typically means that a disk has not been inserted into

Chapter 07 Scripting Quicktest Professional Page 5

Dani Vainstein Working with Files Page 5 of 112

a drive that uses removable disks), you can retrieve only the following four drive
properties:

 DriveLetter, DriveType, IsReady, ShareName

Any attempt to retrieve the properties of another drive will trigger an error.
Fortunately, the IsReady property allows the script to check whether a drive is
ready before attempting to retrieve any of the properties that can trigger an error.

The IsReady property returns a Boolean value; if the value is True, the drive is
ready, and you can retrieve all the properties of the drive. If the value is False,
the drive is not ready, and you can return only DriveLetter, DriveType,
IsReady, and ShareName.

The following script returns a collection of disk drives installed on a computer. For

each drive, the script uses the IsReady property to ensure that the drive is ready.
If it is, the script echoes the drive letter and the amount of free space. If the drive

is not ready, the script echoes only the drive letter, one of the four properties that

can be accessed even if a drive is not ready.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oDrivesCol = oFSO.Drives

For Each oDrive in oDrivesCol

 If oDrive.IsReady = True Then
 sOut = sOut & "Drive letter: " & oDrive.DriveLetter & vbCrLf

 sOut = sOut & "Free Space: " & oDrive.FreeSpace & vbCrLf
 Else
 sOut = sOut & "Drive letter: " & oDrive.DriveLetter & vbCrLf
 End If
Next

This problem does not occur with WMI. If there is no disk in drive A or no CD in

the CD-ROM drive, the script does not fail. Instead, WMI simply reports the
amount of free space as Null.

Managing Folders

Disk drive properties such as FreeSpace and TotalSize provide global

information that is important. However, disk drive information is necessary, but
not sufficient, for managing a file system. Although it is important to know which

drive a file is stored on, you also need to know the folder in which that file is

stored. In addition, many other system management tasks take place at the folder
level: Folders are copied, folders are moved, folders are deleted, folder contents
are enumerated.

The FileSystemObject can return detailed information about the folders on a disk
drive. In addition, the FileSystemObject provides a number of methods for

carrying out such tasks as copying, moving, and deleting folders, and for

enumerating the files and subfolders within a folder.

Binding Folders

In the Windows Shell, folders are Component Object Model (COM) objects. This

means that, before you can access the properties of an individual folder, you must
create an object reference to that folder, a process commonly referred to as

Chapter 07 Scripting Quicktest Professional Page 6

Dani Vainstein Working with Files Page 6 of 112

binding. You can bind to a folder by creating an instance of the FileSystemObject
and then using the GetFolder method to connect to the folder.

When using the GetFolder method, you must:

 Specify the path name to the folder. The path can be referenced by either a
local path or a UNC path (i.e \\accounting\receivables). However, you cannot
use wildcards within the path name. In addition, you cannot create a single

object reference that binds to multiple folders at the same time. If you need to
work with multiple folders, you either need to use WMI (which can return a
collection of folders) or create a separate object reference for each folder.

 Use the Set keyword when assigning the path to a variable. The Set

keyword is required because it indicates that the variable in question is an
object reference.

Although wildcard characters are not allowed, you can use the dot (.) to bind to

the current folder, dot-dot (..) to bind to the parent folder of the current folder,
and the backslash (\) to bind to the root folder. For example, the following code
statement binds to the current folder:

Set oFolder = oFSO.GetFolder(".")

Verifying That a Folder Exists

Most folder operations, including copying, moving, and deleting, require the
specified folder to exist before the operation can be carried out; after all, a script
cannot copy, move, or delete a folder that does not exist. If the script attempts to

bind to a nonexistent folder, the script will fail with a "Path not found" error.

To avoid this problem, you can use the FolderExists method to verify that a

folder exists before attempting to bind to it. FolderExists takes a single
parameter (the path name to the folder) and returns a Boolean value: True if the
folder exists, False if the folder does not.

Creating a Folder

It is unlikely that you will ever sit down, implement your file system infrastructure

(that is, your folders and subfolders), and then never have to touch that
infrastructure again. Instead, a file system tends to be dynamic: because of ever-

changing needs, existing folders might be deleted and new folders might be
created. For example, if your organization provides users with storage space on

file servers, you need to create a new folder each time a new user account is
created.

The FileSystemObject gives script writers the ability to programmatically create

folders, a capability that can make your scripts even more powerful and more
useful. For example, the following script checks to see whether a specified folder
exists. If the folder exists, the script uses the GetFolder method to bind to the

folder. If the folder does not exist, the script echoes a message to that effect.

Set oFSO = CreateObject("Scripting.FileSystemObject")

If oFSO.FolderExists("C:\FSO") Then

 Set oFolder = oFSO.GetFolder("C:\FSO")

Chapter 07 Scripting Quicktest Professional Page 7

Dani Vainstein Working with Files Page 7 of 112

 MsgBox "Folder binding complete."

Else

 MsgBox "Folder does not exist?"

End If

Although this approach prevents the script from crashing, you might prefer that
your script create the folder rather than simply report that the folder does not
exist. To do this, create an instance of the FileSystemObject, and then call the

CreateFolder method, passing the complete path to the new folder as the sole

parameter. For example, the following script creates a new folder named C:\FSO.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFolder = oFSO.CreateFolder("C:\FSO")

If the folder already exists, a "File exists" error will occur. Because of that, you
might want to check for the existence of the folder before trying to create (or, in

that case, re-create) it.

The FileSystemObject can only create folders on the local computer. If you need
to create folders on a remote computer, you will need to use the WshController
object. Alternatively, you can create a folder locally and then use WMI to move

that folder to the remote computer. (The folder must be created and then moved

because WMI does not have a method for creating folders.)

Deleting a Folder

From time to time, folders need to be deleted. For example, you might have a file
server that includes a folder for each individual user. When a user leaves the

organization, the folder belonging to that user should be deleted; this helps ensure
that the orphaned folder does not use up valuable disk space. Likewise, you might

have a script that stores temporary files within a folder. Before the script finishes,

you might want to delete that folder and thus remove all the temporary files.

The DeleteFolder method provides a way to delete a folder and all its contents.

The DeleteFolder method requires a single parameter: the path of the folder to
be deleted. For example, the following code deletes the folder C:\FSO and
everything in it.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.DeleteFolder("C:\FSO")

The DeleteFolder method deletes all items immediately; it does not ask for
confirmation of any kind or send the items to the Recycle Bin.

Using Wildcards to Delete Folders

One of the main advantages of using scripts as a management tool is that scripts

can operate on multiple items at the same time. For example, rather than delete a

series of folders one by one, you can use scripts to delete a set of folders in a
single operation.

The FileSystemObject allows you to use wildcard characters to delete a specific

set of folders. For example, suppose you have the folder structure shown in

Chapter 07 Scripting Quicktest Professional Page 8

Dani Vainstein Working with Files Page 8 of 112

Figure 1 and you want to delete all the subfolders beginning with the letter S.

Figure 1 – Sample Folder Structure

This can be done by using the following command; when run against the sample

folder structure, the command deletes the folders Scripts, Subfolder1, and
Subfolder2:

oFSO.DeleteFolder("C:\FSO\S*")

This command deletes all the subfolders beginning with the letters Su, meaning

only Subfolder1 and Subfolder2 will be deleted:

oFSO.DeleteFolder("C:\FSO\Su*")

Wildcard characters can appear only in the final part of the path parameter. For

example, this command, which features a wildcard character in the middle of the
path parameter, generates a "Path not found" error:

oFSO.DeleteFolder("C:*\Subfolder1")

Copying a Folder and Its Contents

The ability to copy a folder, and every item contained within that folder, is
important in system administration. Sometimes you need to copy folders in order
to create backups; by having the same folder on Computer A that you have on

Computer B, you are less likely to experience data loss should Computer B
unexpectedly fail. At other times, you might want to deploy all the files contained
in a particular folder to a large number of computers. Using a script to copy this

folder to each computer is far more efficient than performing the task manually.

The CopyFolder method allows you to copy a folder and its contents to another
location. When used without any wildcard characters, the CopyFolder method
functions like the Xcopy /E command: It copies all the files and all the subfolders,

including any empty subfolders. The CopyFolder method requires two

parameters:

 Source folder (the folder being copied). This folder can be specified either as

a local path (C:\Scripts) or as a UNC path (\\helpdesk\scripts).

 Destination folder (the folder that will hold the copied information). This

folder can also be specified either as a local path or as a UNC path. If the
destination folder does not exist, the script automatically creates the folder.

Chapter 07 Scripting Quicktest Professional Page 9

Dani Vainstein Working with Files Page 9 of 112

In addition, the CopyFolder method accepts an optional third parameter,
Overwrite. When this parameter is set to True, the default setting, the script

overwrites any existing folders in the destination folder. For example, if you are
copying a folder named Scripts, and the destination already contains a folder by
that name, the destination folder will be replaced by the newly copied information.

By setting this parameter to False, the script will not overwrite existing

information and instead generates a run-time error.

The CopyFolder method stops the moment it encounters an error, even if the
script contains an On Error Resume Next statement. For example, suppose the

script has 100 subfolders to copy, and CopyFolder successfully copies 3 of those

subfolders before encountering an error. At that point, the CopyFolder method
ends and the script fails; the script will not even attempt to copy the remaining 97

subfolders.

Because CopyFolder is a single operation, there is no way to track its progress;
you simply have to wait until the operation has finished. If you want to monitor

the progress of the copy command, you should use the Shell Application object
instead. This object is discussed in "Chapter 11 – Shell32" in this book.

Using Wildcards to Copy Folders

The CopyFolder command copies the files stored in a folder as well as the files
stored in any subfolders of that folder. This can be a problem; after all, what if you
want to copy only the files in C:\FSO and not all the files stored in

C:\FSO\Subfolder1, C:\FSO\Subfolder2, and C:\FSO\Subfolder3?

Unfortunately, there is no straightforward method for copying the files in a parent
folder without also copying the files stored in child folders. You can use wildcard
characters to limit the set of subfolders that are copied; for example, the following

command copies only those folders that start with the letters log. However, when
you use wildcard characters, no files other than those in the specified folders will
be copied, not even files that begin with the letters log:

oFSO.CopyFolder "C:\Scripts\Log*", "C:\Archive", True

When the preceding line of code is run, the folders C:\Scripts\Logs and

C:\Scripts\Logfiles are copied, along with all the files stored within those folders.
However, the files within the C:\Scripts folder are not copied.

When you use the CopyFolder method, you cannot copy only the files in a folder

without also copying the files in any subfolders. To copy only the files and not the
subfolders, use the CopyFile method instead.

Moving a Folder and Its Contents

When you copy a folder from one location to another, you end up with duplicate

copies of the information. Sometimes that is exactly what you want. On other
occasions, however, you do not want two copies of the information; instead, you
want to move the sole copy from Computer A to Computer B, or from hard disk C

to hard disk D.

Chapter 07 Scripting Quicktest Professional Page 10

Dani Vainstein Working with Files Page 10 of 112

Moves such as this are often done to free disk space on a particular drive; for
example, you might periodically move seldom-accessed folders to an archive drive.

Alternatively, you might have a monitoring script that logs information to the local
computer. When monitoring is complete, you might want that information
uploaded to a central monitoring station and then deleted from the local computer.

That way, the local computer will be prepared for the next round of monitoring.

The MoveFolder method accepts two parameters:

 Source folder (the folder to be moved). This folder can be specified either as

a local path or as a UNC path.

 Destination folder (the location where the folder is to be moved). This folder

can be specified either as a local path or as a UNC path.

If the destination folder does not exist, the source folder will be moved. If the
destination folder already exists, however, the move operation will fail. You cannot

use MoveFolder to overwrite an existing folder.

MoveFolder method cannot perform any sort of rollback should the script fail. For

example, suppose a network connection fails before a script has been able to move

all the files from one computer to another. In a case such as that, you will end up
with some files on Computer A, some files on Computer B, and possibly even a file

or two lost in transit. However, there is no way for MoveFolder to roll back the

failed transactions and restore the two computers to their previous states.

Because of that, you might want to use two methods, CopyFolder and
DeleteFolder, when transferring folders and their contents across the network.

You can use CopyFolder to copy the folder from Computer A to Computer B. If

the copy operation succeeds, you can then use DeleteFolder to delete the folder
on Computer A. If the operation fails, you can cancel the delete command and rest
assured that the folder and all its contents are still safely stored on Computer A.

Renaming a Folder

The FileSystemObject does not include a method, such as RenameFolder, that
provides an obvious way to rename a folder. However, you can rename a folder by

using the MoveFolder method and maintaining the same relative location. For

example, suppose you have a folder with the following path:

C:\Scripts\PerformanceMonitoring\Servers\Domain Controllers\Current Logs

If you rename the folder by using the Rename command in Windows Explorer, the
path remains identical except for the endpoint, the folder itself:

C:\Scripts\PerformanceMonitoring\Servers\Domain Controllers\Archived Logs

The MoveFolder method enables you to achieve the same end result by moving

the folder from C:\Scripts\PerformanceMonitoring\Servers\Domain

Controllers\Current Logs to C:\Scripts\PerformanceMonitoring\Servers\Domain
Controllers\Archived Logs. The net result is exactly the same as that of using
Windows Explorer to rename the folder.

For example, the following script uses MoveFolder to rename the folder

C:\FSO\Samples to C:\FSO\Scripts. Before the script runs, Samples is the only
subfolder in C:\FSO. After the script runs, Scripts is the only subfolder in C:\FSO.

Chapter 07 Scripting Quicktest Professional Page 11

Dani Vainstein Working with Files Page 11 of 112

Furthermore, Scripts contains all the files and subfolders previously contained in
Samples.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.MoveFolder "C:\FSO\Samples" , "C:\FSO\Scripts"

Enumerating Folder Properties

Because folders are COM objects, they have properties that can be retrieved and
enumerated. To retrieve detailed information about a specified folder, you can use

the Folder object, one of the components of the FileSystemObject.

To retrieve the properties of a folder, a script must:

1. Create an instance of the FileSystemObject.

2. Use the GetFolder method to bind to an individual folder.

3. Echo (or manipulate) the properties shown in Folder Object on page 83

When working with folder properties, note that the Files property and the
Subfolders property both return collections rather than a single item. In addition,

the Attributes property is returned as a bitmap value.

The following code uses the GetFolder method to bind to the folder C:\FSO and

then echoes a number of properties for that folder

Dim oFSO, oFolder, sOut

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFolder = oFSO.GetFolder("C:\FSO")

sOut = sOut & "Date created: " & oFolder.DateCreated & vbCrLf

sOut = sOut & "Date last accessed: " & oFolder.DateLastAccessed & vbCrLf

sOut = sOut & "Date last modified: " & oFolder.DateLastModified & vbCrLf

sOut = sOut & "Drive: " & oFolder.Drive & vbCrLf

sOut = sOut & "Is root folder: " & oFolder.IsRootFolder & vbCrLf

sOut = sOut & "Name: " & oFolder.Name & vbCrLf

sOut = sOut & "Parent folder: " & oFolder.ParentFolder & vbCrLf

sOut = sOut & "Path: " & oFolder.Path & vbCrLf

sOut = sOut & "Short name: " & oFolder.ShortName & vbCrLf

sOut = sOut & "Short path: " & oFolder.ShortPath & vbCrLf

sOut = sOut & "Size: " & oFolder.Size & vbCrLf

sOut = sOut & "Type: " & oFolder.Type & vbCrLf

MsgBox sOut

Set oFSO = Nothing

Date created: 2/7/2002 10:27:50 AM

Date last accessed: 2/13/2002 8:57:18 AM

Date last modified: 2/13/2002 8:57:18 AM

Drive: C:

Is root folder: False

Name: FSO

Parent folder: C:\

Path: C:\FSO

Short name: FSO

Short path: C:\FSO

Size: 0

Type: File Folder

Chapter 07 Scripting Quicktest Professional Page 12

Dani Vainstein Working with Files Page 12 of 112

Managing Folder Attributes

File systems typically support the concept of attributes, information about a file or
folder that goes beyond the folder name and size. For example, if you right-click a

folder in Windows Explorer and then click Properties, you can access the attributes
for that folder.

The FileSystemObject can be used to return several important attributes of a
folder. These attributes are the - DriveType Constants in Table 4 on page 111

The values listed are the only values that can be retrieved or configured by using

the FileSystemObject. Although this seems simple enough, the data returned to
you by the FileSystemObject can be confusing at first. For example, if you echo
the value of the Attributes property for a folder, you might see a value like 20, a

value that does not appear in the list of valid attribute values.

In addition, you will receive only a single value, even if a folder has all possible
attributes (that is, it is a hidden, compressed system folder ready for archiving). In
a case such as this, your script will not display the values 2, 4, 16, 32, and 2048

but instead will display the value 2102. This is because attribute values are always
returned in the form of a bitmap.

With attributes, the term bitmap refers to the way data is stored and returned. It

should not be confused with bitmap images, such as .BMP files.

Working with Bitmaps

A bitmap is like a set of switches that can be either on or off. If a particular switch

is off, that switch has the value 0. If the switch is on, at least in the case of a

folder object, it has one of the values shown in the attributes The value of the
bitmap is equal to the sum of all the switches.

For example, a highly simplified illustration of a folder object bitmap is shown in

Figure 2. In this example, only one individual switch, Directory, is on. Directory
has the value 16. Because the other switches are off, each has the value 0. The

total value for the bitmap is thus 16. If you queried the Attributes value for this

folder, the script would return 16.

Figure 2 First Sample Bitmap Representation

By comparison, the folder object shown in Figure 3 has three switches activated:

Hidden (with the value 2), Directory (with the value 16), and Compressed (with

the value 2048). The value for this bitmap would thus be 2 + 16 + 2048, or 2066.
This is also the value that would be returned by a script querying this folder for its

Attributes value.

Figure 3 Second Sample Bitmap Representation

Chapter 07 Scripting Quicktest Professional Page 13

Dani Vainstein Working with Files Page 13 of 112

Bitmaps are designed so that there is only one possible way to achieve a given
value. The only way for a folder attribute to return the value 2066 is for it to be a

hidden and compressed folder. It is mathematically impossible to return a 2066
with any other combination of attributes.

This design enables you to take the return value and determine which switches
have been set and which ones have not; in turn, this allows you to determine the

attributes of the folder. If you receive the return value 2066, you know that the
only way to receive that value is to have a hidden and compressed folder.

Fortunately, you do not have to perform any sort of mathematical calculations to
derive the individual attributes. Instead, you can use the logical AND operator to

determine whether an individual switch is on or off. For example, the following

code sample checks to see whether the folder is hidden; if it is, the script echoes
the message "Hidden folder."

If oFolder.Attributes And 2 Then

 MsgBox "Hidden folder."

End If

Although the If Then statement might appear a bit strange, it makes a little more
sense when read like this: "If the attributes switch with the value 2 is on, then ..."
Likewise, this statement would read, "If the attributes switch with the value 16 is

on, then ..."

If oFolder.Attributes AND 16 Then

The following function binds to the folder C:\FSO and then returns the folder

attributes as a string.

Function GetFolderAttrString(ByVal sFolderName)

 Dim oFSO, oFolder

 Dim sTmp

 Set oFSO = CreateObject("Scripting.FileSystemObject")

 Set oFolder = oFSO.GetFolder(sFolderName)

 If oFolder.Attributes And 16 Then sTmp = "D"

 If oFolder.Attributes And 2 Then sTmp = sTmp & "H"

 If oFolder.Attributes And 4 Then sTmp = sTmp & "S"

 If oFolder.Attributes And 32 Then sTmp = sTmp & "A"

 If oFolder.Attributes And 2048 Then sTmp = sTmp & "C"

 GetFolderAttrString = sTmp

 Set oFolder = Nothing : Set oFSO = Nothing

End Function

MsgBox GetFolderAttrString("C:\RECYCLER")

Figure 4 Folder Attributes

Chapter 07 Scripting Quicktest Professional Page 14

Dani Vainstein Working with Files Page 14 of 112

Changing Folder Attributes

As explained in "Working with Bitmaps," individual folder attributes can be likened

to switches. If the switch for Hidden is on, the folder is a hidden folder. If the
switch for Hidden is off, the folder is not a hidden folder.

This analogy can be carried further by noting that light switches are typically under

your control: you can choose to turn them on, or you can choose to turn them off.

The same thing is true of folder attributes: as with other switches, you can turn
these attribute switches on, or you can turn them off.

You can use scripts to toggle these switches on or off (for example, to hide or

unhide a folder). The easiest way to change folder attributes is to use the following
procedure:

1. Use the GetFolder method to bind to the folder.

2. Check for the value of the attribute you want to change.
For example, if you want to unhide a folder, check to see whether the folder
is hidden.

3. If the folder is hidden, use the logical operator XOR to toggle the switch

and change it to not hidden. If the folder is not hidden, be careful not to

use XOR. If you do, the switch will be toggled, and the folder will end up
hidden.

For example, the following code uses the AND operator to check whether the

switch with the value 2 (hidden folder) has been set on the folder C:\FSO. If it has,
the script then uses the XOR operator to turn the switch off and unhide the folder.

Set oFSO = CreateObject("Scripting.FileSystemObject")
Set oFolder = oFSO.GetFolder("C:\FSO")

If oFolder.Attributes AND 2 Then

 oFolder.Attributes = oFolder.Attributes XOR 2

End If

Enumerating Files in a Folder

Except for a few rare cases, folders exist solely to act as storage areas for files.

Sometimes these folders are required by the operating system; for example, the
operating system expects to find certain files in certain folders. In other cases,
folders are created as a way to help system administrators manage their

computers, or as a way to help users manage their documents. System
administrators might place their scripts in a folder named Scripts and their trouble-
shooting tools in a folder named Diagnostic Tools; users might place their budget

spreadsheets in a folder named Budgets and their payroll information in a folder

named Timecards.

Of course, the fact that a folder exists is often of limited use; you must also know
what files are stored within that folder. Administrators need to know whether a

particular script is stored in C:\Scripts; users need to know whether a particular

spreadsheet is stored in C:\Budgets.

The Folder object includes a Files property that returns a collection of all the files
stored in a folder. To retrieve this collection, a script must:

1. Create an instance of the FileSystemObject.

Chapter 07 Scripting Quicktest Professional Page 15

Dani Vainstein Working with Files Page 15 of 112

2. Use the GetFolder method to bind to the appropriate folder.

3. Set an object reference to the Files property of the folder.

4. Use a For Each loop to enumerate all the files and their properties. The script
does not have to bind to each file individually in order to access the file

properties.

For example, the following code retrieves a collection of files found in the folder

C:\FSO and then echoes the name and size (in bytes) of each file.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFolder = oFSO.GetFolder("C:\FSO")

Set oFilesCol = oFolder.Files

For Each oFile in oFilesCol

 MsgBox oFile.Name, oFile.Size

Next

As with most collections, you have no control over the order in which information

is returned; that is, you cannot specify that files be sorted by name, by size, or by
any other criteria. If you want to sort the file collection in a particular way, you
need to copy the collection to an array, a Dictionary, or a disconnected recordset

and then sort the items.

Enumerating Subfolders

In addition to knowing which files are stored in a folder, you need to know which
subfolders are stored in a folder; this allows you to develop a complete picture of

the folder infrastructure. The Folder object includes a Subfolders property that
returns a collection consisting of the top-level subfolders for a folder.

Top-level subfolders are those folders contained directly within a folder; subfolders

contained within those subfolders are not part of the collection. For example, in

the sample folder structure shown in Figure 5, only Subfolder 1 and Subfolder 2
are top-level subfolders of the folder Scripts. As a result, only Subfolder 1 and

Subfolder 2 are returned as part of the Subfolders property.

Chapter 07 Scripting Quicktest Professional Page 16

Dani Vainstein Working with Files Page 16 of 112

Figure 5 Sample Folder Structure

To obtain a subfolder collection, a script must:

1. Create an instance of the FileSystemObject.

2. Use the GetFolder method to bind to a folder.

3. Create an object reference to the Subfolders property. This is required
because collections are considered objects.

After you have obtained the object reference to the collection, you can then use a

For Each loop to enumerate each of the subfolders in that collection. The following

code binds to the folder C:\FSO and then echoes the name and size of each
subfolder. In addition to the folder name, you can echo any of the folder properties

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFolder = oFSO.GetFolder("C:\FSO")

Set oSubfoldersCol = oFolder.Subfolders

For Each oSubfolder in oSubfoldersCol

 MsgBox oSubfolder.Name, oSubfolder.Size

Next

Enumerating Subfolders Within Subfolders

Depending on how your file system has been designed, simply knowing the top-

level subfolders of a folder might provide sufficient information to map the folder

infrastructure. In most file systems, however, folders are nested within folders that
are, in turn, nested within other folders. The Subfolders collection can tell you

that the folder C:\Accounting contains two subfolders: 2001 and 2002. However, it

cannot tell which subfolders, if any, are contained within C:\Accounting\2001 and
C:\Accounting\2002.

Fortunately, you can use recursion to enumerate all the subfolders within a set of

subfolders. For example, the Subfolders collection. To return the complete set of

subfolders (for example, Subfolder 1A and Subfolder 1B), you need to use a
recursive function, a function that can call itself. The following example of a script
that can enumerate all the subfolders of a folder (as well as any subfolders within

those subfolders) is:

Chapter 07 Scripting Quicktest Professional Page 17

Dani Vainstein Working with Files Page 17 of 112

1. Creates an instance of the FileSystemObject.

2. Uses the GetFolder method to bind to the folder C:\Scripts.

3. GetFolder is used to return a folder object for C:\Scripts. In turn, the path

C:\Scripts is passed as a parameter to the recursive subroutine
ShowSubfolders. This subroutine will enumerate all the subfolders of
C:\Scripts, as well as any subfolders within those subfolders.

4. Retrieves a collection consisting of all the subfolders of the folder C:\Scripts.
This collection has two items: Subfolder1 and Subfolder 2.

5. Echoes the folder path of the first item in the collection, Subfolder 1. The
subroutine then uses the name of that folder as a parameter passed to itself.

In other words, the script now runs the subroutine ShowSubFolders using

Subfolder 1 as the parameter.

6. Retrieves a collection consisting of all the subfolders of Subfolder 1. This

collection has two items: Subfolder1A and Subfolder 1B.

7. Writes to datatable the folder path of the first item in the collection,

Subfolder 1A. The subroutine then uses the name of that folder as a
parameter passed to itself. In other words, it now runs the function

ShowSubFolders using Subfolder 1A as the parameter.

8. Passes control to the next item in the collection, Subfolder 1B. This occurs
because Subfolder 1A has no subfolders. The subroutine calls itself using

Subfolder 1B as the parameter.

9. Finishes recursing through Subfolder 1. This occurs because Subfolder 1B
has no subfolders. The script then returns to the second item (Subfolder 2)

in the original collection, and repeats the entire process.

Option Explicit

Dim oFSO

Dim nRow : nRow = 1

Set oFSO = CreateObject("Scripting.FileSystemObject")

ShowSubfolders oFSO.GetFolder("C:\Scripts")

Sub ShowSubFolders(Folder)

 Dim Subfolder

 For Each Subfolder in Folder.SubFolders

 DataTable.LocalSheet.SetCurrentRow nRow

 nRow = nRow + 1

 DataTable("Folder", dtLocalSheet) = Subfolder.Path

 Msgbox Subfolder.Path

 Next

End Sub

C:\scripts\Subfolder 1

C:\scripts\Subfolder 1\Subfolder 1A

C:\scripts\Subfolder 1\Subfolder 1B

C:\scripts\Subfolder 2

C:\scripts\Subfolder 2\Subfolder 2A

C:\scripts\Subfolder 2\Subfolder 2A\Subfolder 2A-1

C:\scripts\Subfolder 2\Subfolder 2B

C:\scripts\Subfolder 2\Subfolder 2C

Chapter 07 Scripting Quicktest Professional Page 18

Dani Vainstein Working with Files Page 18 of 112

Managing Files

Managing a file system ultimately requires managing the individual files stored
within that file system. As a QuickTest programmer or a System admin, maybe

you want to keep track of the files stored on a computer. For example, you need
to know whether the correct diagnostic tools have been copied to a server. You

need to know whether certain files (such as games or media files) are being stored

on a file server, despite an organizational policy that forbids users to store such
files. You need to know whether files have been stored on a computer for months

without being accessed and thus are serving no purpose other than using up

valuable hard disk space.

In addition to keeping track of these files, you must dynamically manage them as

well: Files need to be copied, files need to be moved, files need to be renamed,

files need to be deleted. The FileSystemObject provides methods that can help
you carry out all these administrative tasks.

Binding to a File

The FileSystemObject provides a number of methods, such as the CopyFile and
DeleteFile methods, that allow a script to act on a file without creating an
instance of the File object. Other tasks, however, require the File object. For

example, to retrieve a list of file properties, a script must first bind to that file and
then retrieve the properties.

The GetFile method allows you to bind to an individual file. To do this, you create

an instance of the FileSystemObject and then create an instance of the File
object. When using the GetFile method in a script, you must:

 Specify the path to the file. The path can be referenced by using either a
local path or a UNC path (for example, \\accounting\receivables\scriptlog.txt).

However, you cannot use wildcards within the path, nor can you specify
multiple files. GetFile can bind to only a single file at a time.

 Use the Set keyword when assigning the path to a variable. The Set
keyword is required because it indicates that the specified variable is an object

reference.

For example, the following code binds to the file C:\FSO\ScriptLog.txt.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.GetFile("C:\FSO\ScriptLog.txt")

In general, it is a good idea to pass the absolute path as the GetFile parameter;
this ensures that the script will always be able to locate the file in question.

However, it is possible to use relative paths. For example, the following code

sample will work provided that ScriptLog.txt is in the same folder as the script
attempting to bind to it:

oFSO.GetFile("ScriptLog.txt")

Likewise, the next code sample will work if ScriptLog.txt is in the parent folder of

the script attempting to bind to it:

oFSO.GetFile(".\ScriptLog.txt")

Please note, however, that the FileSystemObject will not use the path

Chapter 07 Scripting Quicktest Professional Page 19

Dani Vainstein Working with Files Page 19 of 112

environment variable to search for files. For example, you can start Calculator

from the command prompt by typing calc.exe, regardless of the current drive or

directory, because the operating system searches all folders in the path to locate
the file. This does not happen with the GetFile method. The following code sample

will fail unless the script is running in the C:\Windows\System32 folder, the same
folder where calc.exe is located:

oFSO.GetFile("calc.exe")

Verifying That a File Exists

Sometimes it is important simply to know whether a file exists. This might be done

as part of a software inventory; for example, you might want to check all your
mail servers and see whether a particular script file is present.

Knowing whether a file exists is also important when using scripts to carry out file
system management tasks; as you might expect, attempting to copy, move,

delete, or otherwise manipulate a file that does not exist will generate a run-time

error. To avoid this kind of error, you can use the FileExists method to verify the
existence of the file. The FileExists method requires a single parameter (the path

to the file) and returns a Boolean value: True if the file exists; False if it does

not.

The following code uses the FileExists method to verify the existence of the file
C:\FSO\ScriptLog.txt. If the file exists, the script uses the GetFile method to bind

to the file. If the file does not exist, the script echoes the message, "File does not
exist."

Set oFSO = CreateObject("Scripting.FileSystemObject")

If oFSO.FileExists("C:\FSO\ScriptLog.txt") Then

 Set objFile = oFSO.GetFile("C:\FSO\ScriptLog.txt")

Else

 MsgBox "File does not exist."

End If

You cannot use wildcard characters to verify whether a particular set of files (such
as .txt files) exists in a folder, nor can you use wildcards to verify whether any

files at all exist in a folder. For example, the following code sample does not result

in an error but always returns the value False, regardless of how many files are in
the folder:

MsgBox oFSO.FileExists("C:\FSO*.*")

If you need to verify the existence of a file based on some criteria other than the
path, you have two options:

 Use the GetFolder object to bind to the folder, retrieve the Files property, and

then iterate through the collection of files looking for the files of interest. For

example, you could enumerate all the files and file name extensions, and keep
track of how many have the .doc extension.

 Use The Items method on FolderItem object, using Windows Shell, the , as

same as FSO you have to iterate and looking for the file

 Use WMI. WMI allows you to create more targeted queries, such as selecting
all the files with the .doc file name extension. You can then use the Count

method to determine the number of items in the collection returned to you. If

Chapter 07 Scripting Quicktest Professional Page 20

Dani Vainstein Working with Files Page 20 of 112

Count is greater than 0, at least one file was found with the .doc extension.

Deleting a File

The ability to delete files by using the FileSystemObject enables you to create

scripts that can automatically perform tasks such as disk cleanup operations. For
example, you might have a script that periodically searches for and deletes all

temporary files (files with the .tmp file name extension). Alternatively, the script

might delete files based on some other criteria, such as those that have not been
accessed in the past six months, or those with a particular file name extension

(such as .bmp or .mp3).

You can delete a file by creating an instance of the FileSystemObject and then

calling the DeleteFile method, passing the path to the file as the parameter. For
example, the following code deletes the file C:\FSO\ScriptLog.txt.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.DeleteFile("C:\FSO\ScriptLog.txt")

By default, the DeleteFile method will not delete a read-only file; if fact, a run-

time error will occur if you attempt to delete such a file. To avoid errors, and to
delete read-only files, add the optional Force parameter. When the Force

parameter is set to True, the DeleteFile method can delete any file. For example,

this line of code deletes the file ScriptLog.txt, even if that file is marked as read-
only:

oFSO.DeleteFile("C:\FSO\ScriptLog.txt", True)

Deleting a Set of Files

There might be occasions when you require a script to delete a single, specified
file. More likely, though, you will want to use scripts to delete multiple files. For
example, at the end of the week, you might want to delete a set of log files that

has been archived or delete all the temporary files that have been created but not
removed.

Wildcard characters allow you to delete a set of files within a single folder.

However, you cannot use the DeleteFile method to directly delete files from

multiple folders. Instead, your script needs to iterate through the folders and use
the DeleteFile method to individually delete the files in each folder. To delete files
from multiple folders in a single operation (for example, to delete all the .TMP files

stored anywhere on a computer), you should use WMI instead of the

FileSystemObject or Windows Shell.

To delete a set of files, call the DeleteFile method, supplying the path of the

folder and the wildcard string required to delete files based on name or file name
extension. For example, this line of code deletes all the .doc files in the C:\FSO

folder:

oFSO.DeleteFile("C:\FSO*.doc")

This line of code deletes all the files with the letters log somewhere in the file

name:

oFSO.DeleteFile("C:\FSO*log.*")

Chapter 07 Scripting Quicktest Professional Page 21

Dani Vainstein Working with Files Page 21 of 112

As noted previously, the DeleteFile method does not delete any documents
marked as read-only. If a script attempts to delete a read-only document, a run-

time error will occur, and the DeleteFile method will stop, even if the script uses
the On Error Resume Next statement. For example, suppose you are trying to
delete 1,000 .txt files, and one of those files is marked as read-only. As soon as

the script attempts to delete that file, an error will occur, and the DeleteFile

method will stop. The script will make no attempt to delete any other files, even
though none of them are read-only.

Because of that, you can use an optional second parameter, Force, that can be set
to True. When the Force parameter is set to True, the DeleteFile method can

delete read-only documents. When the Force parameter is set to False (the
default value), the DeleteFile method cannot delete read-only documents.

The following code deletes all the .txt files in the folder C:\FSO. To ensure that all

files, including read-only files, are deleted, the Force parameter is set to True.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.DeleteFile("C:\FSO*log.*", True)

What if you want to delete all files except those marked as read-only? In that
case, you can retrieve the complete set of files by using the Folder object Files

property. You can then cycle through the collection, check to see whether each
individual file is read-only, and, if it is not, delete the file. Or using the Windows

Shell Object, by applying the Filter method over a FolderItem object, then

retrieve the FileItems collection, and iterate the collection by deleting each
member.

Copying a File

Copying files, either from one folder to another on a single computer or from one
computer to another, is a common administrative task. For example, you might
want to copy a new monitoring script to all your servers or replace an outdated

DLL with a newer version. The CopyFile method provides a way to perform these
tasks programmatically.

The CopyFile method has two required parameters and one optional parameter:

 Source. Path to the file being copied. This can be either a path on the local

computer or a UNC path to a remote computer.

 Destination. Path to the location where the file is to be copied. This can also be

a local path or a UNC path.

To specify that the file keep the same name in its destination location, put a

trailing backslash after the destination folder:

oFSO.CopyFile "C:\FSO\Scriptlog.txt", "D\Archive"

To give the file a new name in its destination location, specify a full file name as
the destination:

oFSO.CopyFile "C:\FSO\Scriptlog.txt", "D\Archive\NewFile.txt"

If the destination folder does not exist, it will automatically be created.

 Overwrite. Optional, By default, the CopyFile method will not copy a file if a

file by that same name exists in the destination location. This can be a

Chapter 07 Scripting Quicktest Professional Page 22

Dani Vainstein Working with Files Page 22 of 112

problem; among other things, this prevents you from replacing an older

version of a file with a newer version. To allow the CopyFile method to copy

over existing files, set the optional Overwrite parameter to True.

When specifying the destination folder, it is important to include the trailing

backslash (for example, D:\Archive\). If the backslash is there, CopyFile will copy

the file into the Archive folder. If the backslash is not there, CopyFile will try to
create a new file named D:\Archive. If the folder D:\Archive already exists, a
"Permission denied error" will be generated, and the copy procedure will fail.

The CopyFile method will also fail if you attempt to overwrite an existing read-
only file, even if you have set the OverWrite parameter to True. To copy over a

read-only file, you must first delete the file and then call the CopyFile method.

Copying a Set of Files

Wildcard characters provide a way to copy an entire set of files as long as these
files are all in the same folder. You can copy a set of files using the same

parameters used to copy a single file, but you must include a wildcard as part of

the source parameter. For example, the following code copies all the .txt files
found in C:\FSO to D:\Archive.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.CopyFile "C:\FSO*.txt" , "D:\Archive\" , True

Using wildcards with the CopyFile method allows you to copy all the files in a
folder without copying any subfolders in that folder; the CopyFolder method, by

contrast, copies both files and subfolders. The following code statement copies all
the files in the C:\FSO folder without copying any subfolders:

oFSO.CopyFile "C:\FSO*.*" , "D:\Archive\"

Moving a File

Instead of copying a file, you might want to move it. For example, if a disk is

running low on space, you might want to move a file to a new location. If a
computer is changing roles, you might want to move certain diagnostic tools to its

replacement. In either case, you do not want two or more copies of the file; you

want one copy of the file, stored in a new place.

The MoveFile method enables you to move a file from one location to another.

The MoveFile method works exactly like the CopyFile method: You create an

instance of the FileSystemObject, call the MoveFile method, and pass two
parameters:

 The complete path to the file to be moved.

 The complete path to the new location, making sure to include the trailing
backslash.

For example, the following code moves C:\FSO\ScriptLog.log to the Archive folder
on drive D.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.MoveFile "C:\FSO\ScriptLog.log" , "D:\Archive\"

Chapter 07 Scripting Quicktest Professional Page 23

Dani Vainstein Working with Files Page 23 of 112

Moving a Set of Files

You can also use wildcard characters to move multiple files in a single operation.

For example, to move all the files in the FSO folder that begin with the letters
data, use the parameter C:\FSO\Data*.*. Wildcard characters are especially
useful for moving all the files of a particular type because file types are usually

denoted by file name extensions. For example, the script in Listing 4.25 moves all
the log files (with the .log file name extension) from the FSO folder on drive C to
the Archive folder on drive D.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.MoveFile "C:\FSO*.log" , "D:\Archive\"

Rename a File

The FileSystemObject does not include a direct method for renaming a file.
However, in much the same way that a folder can be renamed using the

MoveFolder method, files can be renamed using the MoveFile method. To

rename a file, call the MoveFile method but leave the file in its current folder.

For example, the following code renames ScriptLog.txt to BackupLog.txt.
Technically, the script actually moves C:\FSO\ScriptLog.txt to a new path:

C:\FSO\BackupLog.txt. The net result, however, is that the file named

ScriptLog.txt is now named BackupLog.txt.

Set oFSO = CreateObject("Scripting.FileSystemObject")

oFSO.MoveFile "C:\FSO\ScriptLog.log" , "D:\FSO\BackupLog.txt"

Managing File Properties

Files have a number of properties that are extremely useful for managing a file
system. For example, the DateLastAccessed property tells you the date when

someone last opened the file. This property can be used to identify files that are
taking up disk space yet are never used. Similarly, the Size property tells you the
size of a file in bytes. This helps you to better analyze disk usage; you can tell

whether a single file might be using up more than its fair share of storage space.

Traditionally, system administrators have accessed file properties by using either
Windows Explorer or command-line tools. Although these tools can return
information about the files on a computer, they are not always designed to save

this data or to act on it. In addition, many of these tools have only a limited ability

to be automated, making it more difficult for system administrators to periodically
sweep their hard drives and search for files that meet specific criteria.

Fortunately, detailed information about any file on a computer can also be

retrieved by using the FileSystemObject; among other things, this allows you to

automate the process of querying the file system for information about a file or
group of files.

To access file properties, a script must:

1. Create an instance of the FileSystemObject.

2. Use the GetFile method to create an object reference to a particular file. The

Chapter 07 Scripting Quicktest Professional Page 24

Dani Vainstein Working with Files Page 24 of 112

script must pass the path of the file as the GetFile parameter.

3. Echo (or otherwise manipulate) the appropriate file properties

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFile = oFSO.GetFile("c:\windows\system32\scrrun.dll")

sOut = sOut & "Date created: " & oFile.DateCreated & vbCrLf

sOut = sOut & "Date last accessed: " & oFile.DateLastAccessed & vbCrLf

sOut = sOut & "Date last modified: " & oFile.DateLastModified & vbCrLf

sOut = sOut & "Drive: " & oFile.Drive & vbCrLf

sOut = sOut & "Name: " & oFile.Name & vbCrLf

sOut = sOut & "Parent folder: " & oFile.ParentFolder & vbCrLf

sOut = sOut & "Path: " & objFile.Path & vbCrLf

sOut = sOut & "Short name: " & oFile.ShortName & vbCrLf

sOut = sOut & "Short path: " & oFile.ShortPath & vbCrLf

sOut = sOut & "Size: " & oFile.Size & vbCrLf

sOut = sOut & "Type: " & oFile.Type & vbCrLf

MsgBox sOut

Date created: 10/29/2001 10:35:36 AM

Date last accessed: 2/14/2002 1:55:44 PM

Date last modified: 8/23/2001 4:00:00 AM

Drive: c:

Name: scrrun.dll

Parent folder: C:\Windows\system32

Path: C:\Windows\system32\scrrun.dll

Short name: scrrun.dll

Short path: C:\Windows\system32\scrrun.dll

Size: 147483

Type: Application Extension

Enumerating File Attributes

Like folders, files also have attributes that can be retrieved and configured using

the FileSystemObject. Also like folders, file attributes are returned as a bitmap

value. (For more information on bitmap values and how to use them, see
Managing Folder Attributes on page 12.) File attributes can include any or all of the

values described in Table 5 on page 112

To retrieve the attributes of a file, use the GetFile method to bind to the file. After

you have created an object reference to the file, you can use the logical AND
operator to determine the file attributes. If the file does not have any attributes
configured, the Attributes value will be 0.

The following function binds to the folder C:\FSO\ScriptLog.txt and then returns

the folder attributes as a string.

Function GetFileAttrString(ByVal sFileName)

 Dim oFSO, oFolder

 Dim sTmp

 Set oFSO = CreateObject("Scripting.FileSystemObject")

 Set oFile = oFSO.GetFolder(sFileName)

 If oFile.Attributes And 1 Then sTmp = sTmp & "R"

 If oFile.Attributes And 2 Then sTmp = sTmp & "H"

 If oFile.Attributes And 4 Then sTmp = sTmp & "S"

Chapter 07 Scripting Quicktest Professional Page 25

Dani Vainstein Working with Files Page 25 of 112

 If oFile.Attributes And 32 Then sTmp = sTmp & "A"

 If oFile.Attributes And 64 Then sTmp = sTmp & "L"

 If oFile.Attributes And 2048 Then sTmp = sTmp & "C"

 GetFileAttrString = sTmp

 Set oFile = Nothing : Set oFSO = Nothing

End Function

MsgBox GetFileAttrString("C:\FSO\ScriptLog.txt")

Configuring File Attributes

In addition to enumerating file attributes, the FileSystemObject provides a way
to configure the following attributes:

 ReadOnly, Hidden, System, Archive

To configure a file attribute, the script should use the following procedure:

1. Use the GetFile method to bind to the file.

2. Check for the attribute you want to change.

3. For example, if you want to make a file read-only, check to see whether the file

has already been marked read-only.

4. If the file is not read-only, use the logical operator XOR to toggle the switch.

This will mark the file as read-only. If the file is already read-only, be careful
not to use XOR. If you do, the switch will be toggled, and the read-only
attribute will be removed.

The following code uses the AND operator to check whether the switch with the

value 1 (read-only) has been set on the file C:\FSO\TestScript.vbs. If the file is not
read-only, the script uses the XOR operator to turn the switch on and mark the
file as read-only.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFile = oFSO.GetFolder("C:\FSO\TestScript.vbs")

If oFile.Attributes AND 1 Then

 oFile.Attributes = oFile.Attributes XOR 1

End If

You can also simultaneously remove the ReadOnly, Hidden, System, and Archive

attributes by using the following code statement:

objFile.Attributes = objFile.Attributes AND 0

Parsing File Paths

A path is a hierarchical series of names that allow you to pinpoint the exact
location of a file or folder. In that respect, paths are similar to street addresses:
they provide information that tells you precisely where to locate an object. A street

address such as One Main Street, Redmond, WA, tells you precisely where to find

a particular residence. Likewise, the path C:\FSO\Scripts\ScriptLog.txt tells you
precisely where to locate a particular file. Just as only one building can be located
at One Main Street, Redmond, WA, only one file can be located at

C:\FSO\Scripts\ScriptLog.txt.

Complete paths such as C:\FSO\Scripts\ScriptLog.txt are very important because
they provide the only way to uniquely identify a file or folder location. Because of

that, there will be times when your script will need the complete path.

Chapter 07 Scripting Quicktest Professional Page 26

Dani Vainstein Working with Files Page 26 of 112

At other times, however, you might want only a portion of the path. For example,
you might want to extract only the file name or only the file name extension. To

allow you to parse paths and extract individual path components, the
FileSystemObject provides the methods

 GetAbsolutePathName, GetParentFolderName, GetFileName, GetBaseName,
GetExtensionName

The following code parses the path for the file ScriptLog.txt. This script works only
if ScriptLog.txt is in the same folder as the script doing the parsing. If the two files

are stored in different folders, you must pass the complete path to the GetFile
method (for example, C:\FSO\Scripts\ScriptLog.txt).

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFile = objFSO.GetFile("ScriptLog.txt")

sOut = sOut & "Absolute path: " & oFSO.GetAbsolutePathName(oFile) & vbCrLf

sOut = sOut & "Parent folder: " & oFSO.GetParentFolderName(oFile) & vbCrLf

sOut = sOut & "File name: " & oFSO.GetFileName(oFile) & vbCrLf

sOut = sOut & "Base name: " & oFSO.GetBaseName(oFile) & vbCrLf

sOut = sOut & "Extension name: " & oFSO.GetExtensionName(oFile)

MsgBox sOut

Absolute path: C:\FSO\Scripts\ScriptLog.txt

Parent folder: C:\FSO\Scripts

File name: ScriptLog.txt

Base name: ScriptLog

Extension name: txt

Retrieving the File Version

File versions that are incompatible or out-of-date can create considerable
problems. For example, a script that runs fine on Computer A, where version 2.0

of a particular DLL has been installed, might fail on Computer B, which has version

1.0 of that DLL installed.

These problems can be difficult to troubleshoot, because you are likely to get back
an error saying that the object does not support a particular property or method.

This is because the version of the object installed on Computer B does not support

the new property or method. If you try to debug the script on Computer A, you will
have difficulty finding the problem because the version of the object installed on

Computer A does support the property or method in question.

The GetFileVersion method allows you to retrieve version information from a file.
To use this method, a script must:

1. Create an instance of the FileSystemObject.

2. Call the GetFileVersion method, passing the path to the file as the sole
parameter.

For example, the script in Listing 4.31 retrieves the file version for Scrrun.dll.

Set oFSO = CreateObject("Scripting.FileSystemObject")

MsgBox oFSO.GetFileVersion("c:\windows\system32\scrrun.dll")

Chapter 07 Scripting Quicktest Professional Page 27

Dani Vainstein Working with Files Page 27 of 112

Figure 6 Version Number for Scrrun.dll

Version numbers are typically displayed in four parts, such as 5.6.0.8820, rather
than a single number (such as version 1 or version 5). Version number 5.6.0.8820
contains the following parts:

 5 - The major file part.

 6 - The minor file part. The major and minor parts together represent the way

a version is typically referred to. In conversation, you would likely refer to
version 5.6 rather than version 5.6.0.8820.

 0 - The build part. This is typically 0.

 8820 - The private file part.

Not all files types support versioning. Executable files and DLLs typically support

versioning; plain-text files, including scripts, typically do not.

Reading and Writing Text Files

One of the more powerful tools available for programmers, is the text file. This

might seem hard to believe in an age of high-resolution graphics and multi-user
databases. Nevertheless, simple text files, such as those created in Notepad,

remain a key element in system administration. Text files are lightweight and low

maintenance: They use up very little disk space and require no additional software
of any kind to be installed on the computer. Text files are easy to work with and

are extremely portable: A text file created by using a script can be copied and
viewed on almost any computer in the world, including computers that do not run

a Windows operating system.

In addition to their convenience, text files provide a quick, easy, and standardized
way to get data both into a script and out of a script. Text files can be used to hold

arguments that would otherwise need to be typed at the command line or hard-
coded into a script; rather than typing 100 server names at the command line, a
script can simply read those names from a text file. Likewise, text files provide a

quick and easy way to store data retrieved from a script. This data could be

written directly to a database; however, that requires additional configuration on
the server, additional coding in the script, and additional overhead when the script
runs. Instead, data can be saved to a text file and then later imported into a

database.

The FileSystemObject provides a number of methods for both reading from and
writing to text files.

Chapter 07 Scripting Quicktest Professional Page 28

Dani Vainstein Working with Files Page 28 of 112

Creating Text Files

The FileSystemObject allows you to either work with existing text files or create

new text files from scratch. To create a brand-new text file, simply create an
instance of the FileSystemObject and call the CreateTexFile method, passing
the complete path name as the method parameter. For example, the following

code creates a new text file named ScriptLog.txt in the C:\FSO folder.

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFile = oFSO.CreateTextFile("c:\FSO\ScriptLog.txt")

If the file does not exist, the CreateTextFile method creates it. If the file does

exist, the CreateTextFile method will overwrite the existing file and replace it
with the new, blank file. If you prefer that the existing file not be overwritten, you

can include the optional Overwrite parameter. When this parameter is False,

existing files are not overwritten; when this parameter is True (the default value),
existing files are overwritten. For example, the following code sample does not

overwrite the file C:\FSO\ScriptLog.txt if that file already exists:

Set oFile = oFSO.CreateTextFile("C:\FSO\ScriptLog.txt", False)

If you set the Overwrite parameter to False and the file already exists, a run-time
error will occur. Because of that, you might want to check for the existence of the
file and then, if the file exists, take some other action, such as allowing the user to

specify an alternative file name for the new file.

Creating File Names Within the Script

One way to avoid the problems that can occur if a file already exists is to allow the

script to generate a unique file name. Because the file name generator does not

create meaningful file names, this is probably not a good approach for naming log
files and other files that you might need to refer to in the future. However, it does

provide a way to ensure unique file names for scripts that require a temporary file.
For example, you might have your script save data in HTML or XML format, have

that data displayed in a Web browser, and then have this temporary file deleted
as soon as the Web browser is closed. In a situation such as that, you can use the

GetTempFile name method to generate a unique file name.

To generate a unique file name, a script must create an instance of the

FileSystemObject and then call the GetTempName method (with no
parameters). For example, the following code uses a For Next loop to create 10

random file names.

Set oFSO = CreateObject("Scripting.FileSystemObject")

For i = 1 to 10

 sTempFile = oFSO.GetTempName

 MsgBox sTempFile

Next

The file names generated by GetTempName are not guaranteed to be unique,

partly because of the algorithm used to generate the names and partly because
there are only a finite number of possible names; file names are limited to eight

characters, and the first three characters are always rad. For example, in a test

script that created 10,000 file names, one right after another, 9,894 names were

Chapter 07 Scripting Quicktest Professional Page 29

Dani Vainstein Working with Files Page 29 of 112

unique. The remaining 106 were duplicates (53 pairs of duplicated names).

Opening Text Files

Working with text files is a three-step process. Before you can do anything else,
you must open the text file. This can be done either by opening an existing file or
by creating a new text file. (When you create a new file, that file is automatically

opened and ready for use.) Either approach returns a reference to the
TextStream object.

After you have a reference to the TextStream object, you can either read from or
write to the file. However, you cannot simultaneously read from and write to the

same file. In other words, you cannot open a file, read the contents, and then

write additional data to the file, all in the same operation. Instead, you must read
the contents, close the file, and then reopen and write the additional data.

When you open an existing text file, the file can be opened either for reading or for
writing. When you create a new text file, the file is open only for writing, if for no

other reason than that there is no content to read.

Finally, you should always close a text file. Although this is not required (the file

will generally be closed as soon as the script terminates), it is good programming
practice.

To open a text file:

1. Create an instance of the FileSystemObject.

2. Use the OpenTextFile method to open the text file. The OpenTextFile

method requires two parameters: the path to the file and one of the
following values:

 For reading (parameter value = 1, constant = ForReading). Files
opened in this mode can only be read from. To write to the file, you must
open it a second time by using either the ForWriting or ForAppending

mode.

 For writing (parameter value 2, constant = ForWriting). Files
opened in this mode will have new data replace any existing data. (That

is, existing data will be deleted and the new data added.) Use this

method to replace an existing file with a new set of data.

 For appending (parameter value 8, constant = ForAppending).
Files opened in this mode will have new data appended to the end of the
file. Use this method to add data to an existing file.

You must use the appropriate parameter when opening the file. For example, if

you open a file for reading and then attempt to write to the file, you will receive a
"Bad file mode" error. You will also receive this error if you attempt to open
anything other than a plain-text file. (It is worth noting that both HTML and XML

files are plain-text files.)

However, you cannot use the constants without first defining them. This is due to

the fact that VBScript does not have intrinsic access to COM object constants.

The following script sample will fail and return an "Invalid procedure call or
argument" error because the ForReading constant has not been explicitly defined.

Because it has not been defined, ForReading is automatically assigned the value
0, and 0 is not a valid parameter for OpenTextFile.

Chapter 07 Scripting Quicktest Professional Page 30

Dani Vainstein Working with Files Page 30 of 112

Closing Text Files

Any text files opened by a script are automatically closed when the script ends.

Because of this, you do not have to explicitly close text files any time you open
them. Nevertheless, it is a good idea to always close text files when you are
finished with them. Not only is this good programming practice, but problems will

occur if you try to do one of the following without first closing the file:

 Delete the file. As noted previously, you might occasionally write scripts that

create a temporary file, use that file for some purpose, and then delete the file
before the script terminates. If you attempt to delete an open file, however,

you will encounter an "Access denied" error because the operating system will
not allow you to delete an open file.

 Reread the file. There might be times when you need to read the same file

multiple times within a script. For example, you might open a text file, save the

entire contents of the file to a string variable, and then search that string for
the existence of a particular error code. If the code is found, you might then
read the file on a line-by-line basis, extracting each line where the error was

recorded.

Reading Text Files

Reading data from a text file is a standard procedure used in many enterprise
scripts. You might use this capability to:

If you try to read an open file multiple times, however, you either will not receive
the expected results or will encounter a run-time error.

 Read in command-line arguments. For example, a text file might contain a list
of computers, with the script designed to read in the list and then run against

each of those computers.

 Programmatically search a log file for specified conditions. For example, you

might search a log file for any operations marked Error.

 Add the contents of a log file to a database. For example, you might have a

service or an application that saves information in plain-text format. You could

write a script that reads in the text file and then copies the relevant
information to a database.

The FileSystemObject can be used to read the contents of a text file. When using
the FileSystemObject, keep the following limitations in mind:

 The FSO can read only ASCII text files. You cannot use the FSO to read
Unicode files or to read binary file formats such as Microsoft Word or Microsoft

Excel.

 The FileSystemObject reads a text file in one direction: from the beginning to

the end of the text file. In addition, the FSO reads only line by line. If you need
to go back to a previous line, you must return to the beginning of the file and
read forward to the required line.

 You cannot open a file for simultaneous reading and writing. If you open a file
for reading, you must open the file a second time if you want to modify the
contents. If you attempt to read a file after opening it in write mode, you will

receive a "bad file mode" error.

Chapter 07 Scripting Quicktest Professional Page 31

Dani Vainstein Working with Files Page 31 of 112

Verifying the Size of a File

Windows will sometimes create text files that are empty - that is, files that contain

no characters and have a file size of 0 bytes. This often occurs with log files, which
remain empty until a problem is recorded there. For example, if problems occur
with a user logon (such as a user attempting to log on with an incorrect password

or user account), those problems will be recorded in the Netlogon.log file. Until
such a problem occurs, however, the Netlogon.log file remains empty.

Empty files represent a problem for script writers, because a VBScript run-time
error will occur if you attempt to read such a file. If you try to read an empty file,

an error message similar to the one shown in Figure 4.8 appears.

Figure 7 - Empty File Error Message

If there is a chance that a file might be empty, you can avoid errors by checking
the file size before attempting to read the file. To do this, the script must:

1. Create an instance of the FileSystemObject.

2. Use the GetFile method to bind to the file.

3. Use the Size property to ensure that the file is not empty before attempting

open it.

The following code binds to the file C:\Windows\Netlogon.log. The script checks
the size of the file; if the size is greater than 0, the script opens and reads the file.

If the file size is 0, the script echoes the message "The file is empty."

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oFile = oFSO.GetFile("C:\Windows\Netlogon.log")

If oFile.Size > 0 Then

 Set oTxtFile = oFSO.OpenTextFile("C:\Windows\Netlogon.log", 1)

 sContents = oTxtFile.ReadAll

 MsgBox sContents

 oTxtFile.Close

Else

 MsgBox "The file is empty."

End If

Reading an Entire Text File

The ReadAll method provides the easiest way to read a text file: You simply call

the method, and the entire text file is read and stored in a variable. Having the
contents of the text file stored in a single variable can be useful in a number of
situations. For example, if you want to search the file for a particular item (such as

an error code), it is easier to search a single string than to search the file line by

line.

Chapter 07 Scripting Quicktest Professional Page 32

Dani Vainstein Working with Files Page 32 of 112

Likewise, if you want to concatenate (combine) text files, the ReadAll method
provides the quickest and easiest method. For example, suppose you have a set of

daily log files that you want to combine into a single weekly log file. To do that, a
script can:

 Open the text file for Monday and use ReadAll to store the entire contents in a
variable.

 Open the weekly log file for appending, and write the contents of the variable
to the file. This is possible because any formatting (such as line breaks or tabs)
that is read in from the Monday file is preserved in the variable.

 Repeat steps 1 and 2 until the entire set of daily files has been copied into the

weekly log.

Although it is easier to search a single string, it is not necessarily faster. The

ReadAll method took less than a second to search a 388-KB test file of

approximately 6,000 lines. Reading and searching the file on a line-by-line basis
also took less than a second

Reading a Text File Line by Line

For some purposes, text files typically serve as flat-file databases, with each line of
the file representing a single record in the database. For example, scripts often
read in a list of server names and then carry out an action against each of those

servers. In those instances, the text will look something like the following:

atl-dc-01

atl-dc-02

atl-dc-03

atl-dc-04

When a text file is being used as a flat-file database, a script will typically read
each record (line) individually and then perform some action with that record. For

example, a script (using the preceding sample text file) might read in the name of
the first computer, connect to it, and carry out some action. The script would then

read in the name of the second computer, connect to it, and carry out that same
action. This process would continue until all the records (lines) in the text file have

been read.

The ReadLine method allows a script to read individual lines in a text file. To use

this method, open the text file, and then set up a Do Loop that continues until the

AtEndOfStream property is True. (This simply means that you have reached the
end of the file.) Within the Do Loop, call the ReadLine method, store the

contents of the first line in a variable, and then perform some action. When the
script loops around, it will automatically drop down a line and read the second line

of the file into the variable. This will continue until each line has been read (or until
the script specifically exits the loop).

For example, the following code opens the file C:\FSO\ServerList.txt and then

reads the entire file line by line, echoing the contents of each line to the screen.

Option Explicit

Dim oFSO, oTxtFile, sLine

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oTxtFile = oFSO.OpenTextFile("C:\FSO\ServerList.txt", 1)

Chapter 07 Scripting Quicktest Professional Page 33

Dani Vainstein Working with Files Page 33 of 112

Do Until oTxtFile.AtEndOfStream

 sLine = oTxtFile.ReadLine

 MsgBox sLine

Loop
objFile.Close

"Reading" a Text File from the Bottom to the Top

As noted previously, the FileSystemObject can read a text file only from the
beginning to the end; you cannot start at the end and work your way backwards.

This can sometimes be a problem when working with log files. Most log files store
data in chronological order: The first line in the log is the first event that was
recorded, the second line is the second event that was recorded, and so on. This
means that the most recent entries, the ones you are perhaps most interested in,

are always located at the very end of the file.

There might be times when you want to display information in reverse
chronological order - that is, with the most recent records displayed first and the

oldest records displayed last. Although you cannot read a text file from the bottom

to the top, you can still display the information in reverse chronological order. To
do this, a script must:

1. Create an array to hold each line of the text file.

2. Use the ReadLine method to read each line of the text file and store each

line as a separate element in the array.

3. Display the contents of the array on screen, starting with the last element

in the array (the most recent record in the log file) and ending with the first

element in the array (the oldest log file).

For example, the following code reads in the file C:\FSO\ScriptLog.txt, storing
each line as an element in the array arrFileLines. After the entire file has been

read, the contents are echoed to the screen, beginning with the last element in the

array. To do this, the For Loop begins with the last element (the upper bound of
the array) and incrementally works down to the first element (the lower bound).

Option Explicit

Dim oFSO, oTxtFile, sLine, i, arrFileLines

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oTxtFile = oFSO.OpenTextFile("C:\FSO\ServerList.txt", 1)

Do Until oTxtFile.AtEndOfStream

 Redim Preserve arrFileLines(i)

 arrFileLines(i) = oTxtFile.ReadLine

 i = i + 1

Loop

oTxtFile.Close

For i = Ubound(arrFileLines) to LBound(arrFileLines) Step -1

 MsgBox arrFileLines(i)

Next

Reading a Text File Character by Character

In a fixed-width text file, fields are delimited by length: Field 1 might consist of the
first 15 characters on a line, Field 2 might consist of the next 10 characters, and

Chapter 07 Scripting Quicktest Professional Page 34

Dani Vainstein Working with Files Page 34 of 112

so on. Thus a fixed-width text file might look like the following:

Server Value Status

atl-dc-01 19345 OK

atl-printserver-02 00042 OK

atl-win2kpro-05 00000 Failed

In some cases, you might want to retrieve only the values, or only the status
information. The value information, to pick one, is easy to identify: Values always
begin with the 26th character on a line and extend no more than 5 characters. To

retrieve these values, you need to read only the 26th, 27th, 28th, 29th, and 30th
characters on each line.

The Read method allows you to read only a specified number of characters. Its
sole parameter is the number of characters to be read. For example, the following
code sample reads the next 7 characters in the text file and stores those 7

characters in the variable sCharacters:

sCharacters = oTxtFile.Read(7)

By using the Skip and SkipLine methods, you can retrieve selected characters
from a text file. For example, the following code reads only the sixth character in
each line of a text file. To do this, the script must:

1. Skip the first five characters in a line, using Skip(5).

2. Read the sixth character, using Read(1).

3. Skip to the next line of the file.

Option Explicit

Dim oFSO, oTxtFile, sCharacters

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oTxtFile = oFSO.OpenTextFile("C:\FSO\ScriptLog.txt", 1)

Do Until oTxtFile.AtEndOfStream

 objFile.Skip(5)

 sCharacters = oTxtFile.Read(1)

 MsgBox sCharacters

 oTxtFile.SkipLine

Loop

Write to Text Files

Writing data to a text file is another powerful aid in writing scripts. Text files

provide a way for you to permanently save data retrieved by a script; this data can
be saved either instead of or in addition to being displayed on the screen. Text

files also provide a way for you to keep a log of the actions carried out by a script.

This can be especially useful when creating and debugging scripts. By having the
script record its actions in a text file, you can later review the log to determine

which procedures the script actually carried out and which ones it did not.

The FileSystemObject gives you the ability to write data to a text file. To write
data using the FSO, a script must do the following:

1. Create an instance of the FileSystemObject.

2. Use the OpenTextFile method to open the text file. You can open the text file
in one of two ways:

 For writing (parameter value 2, constant = ForWriting). Files opened in

Chapter 07 Scripting Quicktest Professional Page 35

Dani Vainstein Working with Files Page 35 of 112

this mode will have new data replace any existing data in its entirety. (That
is, existing data will be deleted and the new data added.) Use this mode to

replace an existing file with a new set of data.

 For appending (parameter value 8, constant = ForAppending). Files
opened in this mode will have new data appended to the end of the file.

Use this mode to add data to an existing file.

3. Use either the Write, WriteLine, or WriteBlankLines method to write to

the file.

4. Close the text file, using the Close method.

One weakness with the FileSystemObject is that it cannot be used to directly

modify specific lines in a text file; for example, you cannot write code that says, in

effect, "Skip down to the fifth line in this file, make a change, and then save the
new file." To modify line 5 in a 10-line text file, a script must instead:

1. Read in the entire 10-line file.

2. Write lines 1-4 back to the file.

3. Write the modified line 5 to the file.

4. Write lines 6-10 back to the file

Overwriting Existing Data

For example, suppose you have a script that runs every night, retrieving events

from the event logs on your domain controllers, writing those events to a

database, and recording which computers were successfully contacted and which
ones were not. For historical purposes, you might want to keep track of every

success and every failure over the next year. This might be especially useful for a

new script just being put into use, or for a network with suspect connectivity or
other problems that crop up on a recurring basis.

On the other hand, you might simply want to know what happened the last time

the script ran. In other words, you do not want a log file that contains data for the

past 365 days. Instead, you want a log file that contains only the most recent
information. That allows you to open the file and quickly verify whether or not the
script ran as expected.

When you open a text file in ForWriting mode, any new data you write to the file

replaces all the existing data in that file. For example, suppose you have the
complete works of Shakespeare stored in a single text file. Suppose you then run a
script that opens the file in ForWriting mode and writes the single letter a to the

file. After the file has been written and closed, it will consist only of the letter a. All
the previously saved data will be gone.

The following code opens the text file C:\FSO\ScriptLog.txt in ForWriting mode
and then writes the current date and time to the file. Each time this script is run,

the old date and time are replaced by the new date and time. The text file will

never contain more than a single date-time value.

Option Explicit

Const ForWriting = 2

Dim oFSO, oTxtFile

Set oFSO = CreateObject("Scripting.FileSystemObject")

Set oTxtFile = oFSO.OpenTextFile("C:\FSO\ScriptLog.txt", ForWriting)

oTxtFile.Write Now

Chapter 07 Scripting Quicktest Professional Page 36

Dani Vainstein Working with Files Page 36 of 112

oTxtFile.Close

Appending New Data to Existing Data

Some scripts are designed to run at regularly scheduled intervals and then collect

and save a specific kind of data. These scripts are often used to analyze trends

and to look for usage over time. In these instances, you typically do not want to
overwrite existing data with new data.

For example, suppose you have a script that monitors processor usage. At any

given point in time, processor usage could be anywhere from 0 percent to 100

percent by itself, that single data point is meaningless. To get a complete picture
of how much a processor is being utilized, you need to repeatedly measure and
record processor usage. If you measure processor use every few seconds and get

back data like 99 percent, 17 percent, 92 percent, 90 percent, 79 percent, 88
percent, 91 percent, you can assume processor use is very high. However, this can
only be determined by comparing processor use over time.

By opening a text file in ForAppending mode, you can ensure that existing data

is not overwritten by any new data; instead, that new data is appended to the
bottom of the text file.

Managing Files and Folders Using WMI

Scripts designed to help with file system management typically rely on the
FileSystemObject. There are several reasons why the primary scripting enabler

for file system management should be WMI, and in particular, the

Win32_Directory and CIM_Datafile classes.

The FileSystemObject and WMI have overlapping functionality: You can use
either one to copy, delete, move, rename, or otherwise manipulate files and

folders. However, WMI has two major advantages over the FileSystemObject.

First, WMI works as well on remote computers as it does on the local computer.
By contrast, the FileSystemObject is designed to work solely on the local

computer; to use the FileSystemObject against a remote computer, you typically

have to configure both computers to allow remote script execution using the
WSHController Object.

Second, WMI can work with collections of files and folders across an entire
computer. For example, using WMI you can delete all the .mp3 files on a

computer by using a simple script that essentially says, "Locate all the .mp3 files
on this computer, and then delete them." By contrast, the FileSystemObject is
designed to work with a single folder at a time. To delete all the .mp3 files on a

computer, you need to bind to each folder on the computer, check for the
existence of .mp3 files, and then delete each one.

WMI does have some limitations, however. Enumerating files and folders using
WMI can be slow, and processor-intensive. For example, on a Microsoft®

Windows® 2000-based computer with approximately 80,000 files, the

FileSystemObject returned a list of all files in less than 5 minutes. By contrast,
WMI required over 30 minutes returning the same list. During that time, processor
use averaged about 30 percent, often spiking above 50 percent. Although you

would normally not need to retrieve a list of every single file on a computer, it is
clearly not advisable to use WMI if you ever do need to perform this task.

Chapter 07 Scripting Quicktest Professional Page 37

Dani Vainstein Working with Files Page 37 of 112

Moreover, processor-intensive WMI queries cannot always be stopped simply by
terminating the script. Suppose you start a query that returns a list of all the files

on the file system. After a few minutes, you change your mind and terminate the
script. There is a very good chance that the query will continue to run, using up
memory and draining system resources, even though the script has been stopped.

This is because the script and its query run on separate threads. To stop a query

such as this, you typically have to stop and then restart the WMI service.

In addition, you cannot speed up a file or folder query by requesting only a subset
of file or folder properties.

On a computer running Windows 2000, this query, which returns all the properties

for all the files, took about 30 minutes to complete:

"Select * From CIM_Datafile"

Although this query returns only the name property of the files, it required the

same amount of time to complete:

"Select Name From CIM_Datafile"

Comparing WMI and the FileSystemObject

Automation developers, who write scripts to also manage files and folders

typically, use the FileSystemObject rather than WMI. This is due more to

familiarity than to anything else; most of the same core capabilities are available
using either the FileSystemObject or WMI. The leads to an obvious question:
when should you use the FileSystemObject, and when should you use WMI? Or

does it even matter?

There is no simple answer to that question; instead, the best approach usually

depends on what your script needs to accomplish. When choosing a method for
managing files and folders, you should consider the impact of:

 Speed of execution.

 The ability to recover from errors.

 The ability to run against remote computers.

 Ease of use.

Speed

If your goal is to enumerate all the files on a hard disk, the FileSystemObject will

be much faster. For example, on a Windows 2K system, with a relatively modest
21,963 files, the FileSystemObject required 68 seconds to return a list of all the

files on drive C. By contrast, WMI took nearly 10 times as long (661 seconds) to
complete the same operation.

With more targeted queries, however, WMI can be both faster and more efficient.
For example, the FileSystemObject required 90 seconds to return a list of the 91

.bmp files on the Windows 2000-based test computer. It actually takes longer for

the FileSystemObject to return a subset of files than it does to return the entire
set of files; this is because the FileSystemObject does not allow you to use SQL-
type queries. Instead, it uses recursion to return a list of all the files on the

computer and then, in this case, individually checks each file to see whether the

Chapter 07 Scripting Quicktest Professional Page 38

Dani Vainstein Working with Files Page 38 of 112

extension is .bmp.

Using a filtered query, WMI returned the list of .bmp files in 18 seconds. WMI is

faster in this case because it can request a collection of all .bmp files without
having to return the entire file set and then check the file name extension of each

item in the collection.

Error Handling

The FileSystemObject sometimes provides a faster solution; it rarely, if ever,
provides a more robust solution. The FileSystemObject provides no ability to
recover from an error, even if your script includes the On Error Resume Next

statement.

For example, suppose you have a script designed to delete 1,000 files from a

computer. If an error occurs with the very first file, the script fails, and no attempt

is made to delete any of the remaining files. If an error condition occurs, the
FileSystemObject - and the script - immediately terminates. If an error occurs

partway through an operation, you will have to manually determine which portions
of the procedure succeeded and which portions did not.

WMI is better able to recover from a failed operation. If WMI is unable to delete
the first of the 1,000 files, it simply reports an error condition and then attempts
to delete the next file in the collection. By logging any errors that occur, you can

easily determine which portions of a procedure succeeded and which ones did not.

Note : You can log these individual errors because WMI treats each file operation
separately; if you have 1,000 files, WMI treats this as 1,000 separate deletions.
The FileSystemObject, by comparison, treats each file operation as one

procedure, regardless of whether you have 1 file, 10 files, or 1,000 files.

WMI is also able to more intelligently deal with file and folder access permissions.
For example, suppose you write a script to enumerate all the files on a hard drive.
If WMI encounters a folder that you do not have access to, the script simply skips

that folder and continues. The FileSystemObject, however, attempts to list the

files in that folder. That operation will fail because you do not have access to the
folder. In turn, the FileSystemObject, and your script, will also fail. This is a

problem with Windows 2000-based computers because they typically include a

System Volume Information folder that, by default, grants access only to the
operating system. Without taking precautions to work around this folder, any
attempt to enumerate all the files on a computer using the FileSystemObject is

guaranteed to fail.

Remote Computers

One of the major benefits of WMI is that a script originally designed to run on the

local computer can be easily modified to run on a remote computer. For example,
this script sets the name of the computer (the variable sComputer) to a dot (".").
In WMI, specifying "." as the computer name causes the script to run against the

local computer.

sComputer = "."

Set oWMI = GetObject("winmgmts:" & "!\\" & sComputer & "\root\cimv2")

Chapter 07 Scripting Quicktest Professional Page 39

Dani Vainstein Working with Files Page 39 of 112

To run the script against a remote computer (for example, atl-dc-01), simply
change the value of the variable sComputer:

sComputer = "atl-dc-01"

Set oWMI = GetObject("winmgmts:" & "!\\" & sComputer & "\root\cimv2")

For most file and folder operations, this is the only change required to make a

script work on a remote computer.

Working with remote computers using the FileSystemObject is more

complicated. It is easy to access a shared folder using the FileSystemObject;
simply connect to the folder using the Universal Naming Convention (UNC) path
(for example, \\atl-dc-01\scripts). However, it is much more difficult to carry out

such tasks as searching a remote computer for all files of a specified type. For the
most part, there are only two ways to carry out this procedure:

 Configure an instance of the WSHController object, which allows you to run a
script against a remote computer as if that script was running locally.

 Connect to the administrative shared folders of the remote computer (for
example, using the path \\atl-dc-01\C$ to connect to drive C on the remote
computer). This approach works, provided the administrative shared folders on

the remote machines to - not disabled.

Depending on the operation you are attempting, you might also have to determine
what disk drives are installed on the remote computer. WMI can return all the
files within the file system, regardless of the drive they are stored on. By contrast,

the FileSystemObject can work only on a disk-by-disk basis. Before you can
search a computer for files, you must first obtain a list of all the disk drives and
then individually search each drive.

Easy to Use

WMI allows you to work with collections and to create queries that return a
targeted set of items. This makes WMI easier to use for tasks that require you to

do such things as identify all the read-only folders on a computer or delete all the
.mp3 files in a file system; you issue a request, and WMI returns a collection of all
those items, regardless of their physical location on the computer. This means that

you can accomplish the task in far fewer lines of code than it would take to

accomplish the same task using the FileSystemObject.

For example, this WMI query returns a collection of all the .mp3 files installed on
all the disks on a computer:

"SELECT * FROM CIM_DataFile WHERE Extension = 'MP3'"

To achieve the same result using the FileSystemObject, you must write a script
that:

1. Returns a list of all the disk drives on the computer.

2. Verifies that each disk drive is ready for use.

3. Recursively searches each drive in order to locate all the folders and
subfolders.

4. Recursively searches each folder and subfolder to locate all the files.

5. Checks each extension to see whether the file is an .mp3 file.

6. Keeps track of each .mp3 file.

Chapter 07 Scripting Quicktest Professional Page 40

Dani Vainstein Working with Files Page 40 of 112

Managing Files and Folders Using the Windows Shell

Object

The Windows operating system features another COM object, the Shell object that

includes a number of properties and methods useful in managing file systems.
Because the Shell object offers capabilities not available using either the
FileSystemObject or WMI, you should also consider it when writing scripts for

file system management. The Shell is the portion of the Windows operating
system tasked with managing and providing access to such things as:

 Files and folders

 Network printers

 Other networked computers

 Control Panel applications

 The Recycle Bin

The Shell namespace provides a way to manage these objects in a tree-structured

hierarchy. At the top of this hierarchy is the Desktop; directly below the Desktop
are virtual folders such as My Computer, My Network Places, and Recycle Bin.
Within each of these virtual folders are other items (such as files, folders, and

printers) that can also be managed using the Shell. If you start Windows Explorer,

you see a visual representation of the Shell

Figure 8 The shell Namespace

The Shell itself is composed largely of a series of COM objects, many of which can
be accessed using VBScript. Included among these COM objects are folders.

Within the Windows operating system, folders are individual COM objects that

possess:

 Properties, such as a size and a creation date.

 Items (typically files stored within the folder).

 Methods (known as verbs), which represent actions

such as Copy and Delete - that can be carried out on the folder.

Folder objects - and all the properties, items, and methods belonging to those
objects - can be accessed through the Shell object. The Shell object provides a

Chapter 07 Scripting Quicktest Professional Page 41

Dani Vainstein Working with Files Page 41 of 112

way to programmatically reproduce all the features found in the Windows Shell.
This means that file system management tasks - which typically involve working

with files and folders - carried out using the Shell object.

Scripting the Shell object is not as intuitive as scripting with WMI or the
FileSystemObject. For example, to bind to a file using a Shell object script, you

must:

1. Create an instance of the Shell object.

2. Create an instance of a Folder object.

3. Create a collection of items in the folder.

4. Iterate through the collection until you find the desired file.

This is considerably more complicated than using the FileSystemObject or WMI.

On the other hand, the Shell object does offer a number of capabilities not found
in either WMI or the FileSystemObject, including the ability to:

 Retrieve extended properties for a file or folder (for example, the artist, album

title, and track number for an audio file).

 Display a progress dialog box while copying or moving folders.

 Retrieve the locations of all the special folders on a computer.

 Carry out any of the commands found on the shortcut menu when you right-

click a file or folder.

Folders and Folders Object

Folders are file system objects designed to contain other file system objects. This

does not mean that all folders are alike, however. Instead, folders can vary

considerably. Some folders are operating system folders, which generally should
not be modified by a script. Some folders are read-only, which means that users

can access the contents of that folder but cannot add to, delete from, or modify

those contents. Some folders are compressed for optimal storage, while others are
hidden and not visible to users.

Win32_Directory Class

WMI uses the Win32_Directory class to manage folders. Significantly, the
properties and methods available in this class are identical to the properties and

methods available in the CIM_DataFile class, the class used to manage files. This
means that after you have learned how to manage folders using WMI, you will,
without any extra work, also know how to manage files.

In addition, the Win32_Directory and CIM_DataFile classes share the same set

of methods.

Chapter 07 Scripting Quicktest Professional Page 42

Dani Vainstein Working with Files Page 42 of 112

Figure 9 Win32_Directory and Windows Explorer

Win32_Directory.AccessMask Property

List of access rights to the given file or directory held by the user or group on

whose behalf the instance is returned. This property is only supported under
Windows NT and Windows 2000. On Windows 98 and on Windows NT and
Windows 2000 FAT volumes, the FULL_ACCESS value is returned instead, which

indicates no security has been set on the object.

Data Type

Numeric (uint32)

Possible Values

Constant Value Description

FILE_READ_DATA &H0 Grants the right to read data from the file.

FILE_LIST_DIRECTORY &H0
Grants the right to list the contents of the

directory.

Chapter 07 Scripting Quicktest Professional Page 43

Dani Vainstein Working with Files Page 43 of 112

FILE_WRITE_DATA &H1 Grants the right to write data to the file.

FILE_ADD_FILE &H1 Grants the right to create a file in the directory.

FILE_APPEND_DATA &H4 Grants the right to append data to the file.

FILE_ADD_SUBDIRECTORY &H4 Grants the right to create a subdirectory.

FILE_READ_EA &H8 Grants the right to read extended attributes.

FILE_WRITE_EA &H10 Grants the right to write extended attributes.

FILE_EXECUTE &H20 Grants the right to execute a file.

FILE_TRAVERSE &H20 The directory can be traversed.

FILE_DELETE_CHILD &H40
Grants the right to delete a directory and all
the files it contains (its children), even if the

files are read-only.

FILE_READ_ATTRIBUTES &H80 Grants the right to read file attributes.

FILE_WRITE_ATTRIBUTES &H100 Grants the right to change file attributes.

DELETE &H10000 Grants delete access.

READ_CONTROL &H20000
Grants read access to the security descriptor
and owner.

WRITE_DAC &H40000 Grants write access to the discretionary ACL.

WRITE_OWNER &H80000 Assigns the write owner.

SYNCHRONIZE &H100000
Synchronizes access and allows a process to
wait for an object to enter the signaled state.

Table 1 Access Mask and Permissions Values

Win32_Directory.Archive Property

The archive bit is used by backup programs to identify files that should be

backed up.

 Data Type is Boolean

 If True, the file should be archived.

Win32_Directory.Compressed Property

WMI recognizes folders compressed using WMI itself or using the graphical

user interface; it does not, however, recognize .ZIP files as being compressed.

 Data Type is Boolean

 If True, the file is compressed.

Chapter 07 Scripting Quicktest Professional Page 44

Dani Vainstein Working with Files Page 44 of 112

Win32_Directory.CompressionMethod Property

Algorithm or tool used to compress the logical file. If it is not possible (or not
desired) to describe the compression scheme (perhaps because it is not

known), use the following words: "Unknown" to represent that it is not known
whether the logical file is compressed; "Compressed" to represent that the file
is compressed but either its compression scheme is not known or not disclosed;

and "Not Compressed" to represent that the logical file is not compressed.

 Data Type is String

 Method used to compress the file system object. Often reported simply as
"Compressed."

Win32_Directory.CreationDate Property

Date that the file system object was created.

 Data type is DateTime

 To Convert to a VBScript Date sub-type use WMI

WbemScripting.SWbemDateTime object

Win32_Directory.Drive Property

Drive letter (including colon) of the file. ("c:")

 Data Type is String

Win32_Directory.EightDotThreeFileName Property

MS-DOS®-compatible name for the folder.
For example, EightDotThreeFileName for the folder C:\Program Files might
be C:\Progra~1.

 Data Type is String

Win32_Directory.Encrypted Property

Chapter 07 Scripting Quicktest Professional Page 45

Dani Vainstein Working with Files Page 45 of 112

Boolean value indicating whether or not the folder has been encrypted.

 Data Type is Boolean

Win32_Directory.EncryptionMethod Property

Algorithm or tool used to encrypt the logical file. If it is not possible (or not

desired) to describe the encryption scheme (perhaps for security reasons), use
the following words: "Unknown" to represent that it is not known whether the

logical file is encrypted; "Encrypted" to represent that the file is encrypted but

either its encryption scheme is not known or not disclosed; and "Not Encrypted"
to represent that the logical file is not encrypted.

 Data Type is String

Win32_Directory.Extension Property

File extension (without the dot). Examples: "txt", "mof", "mdb"

 Data Type is String

Win32_Directory.FileName Property

File name (without the dot or extension) of the file. Example: "autoexec"

 Data Type is String

Win32_Directory.FileSize Property

Size of the file system object, in bytes. Although folders possess a FileSize
property, the value 0 is always returned.

 Data Type is Numeric (uint64)

 To determine the size of a folder, use the FileSystemObject or add up the
size of all the files stored in the folder.

Chapter 07 Scripting Quicktest Professional Page 46

Dani Vainstein Working with Files Page 46 of 112

Win32_Directory.FSName Property

Type of file system (NTFS, FAT, FAT32) installed on the drive where the file or
folder is located.

 Data Type is String

Win32_Directory.Hidden Property

Boolean value indicating whether the file system object is hidden.

 Data Type is Boolean

 If True, the file is hidden.

Win32_Directory.InUseCount Property

Number of 'file opens' that are currently active against the file.

 Data Type is Numeric (uint64)

Win32_Directory.LastAccessed Property

Date that the object was last accessed.

 Data Type is DateTime

 To Convert to a VBScript Date sub-type use WMI
WbemScripting.SWbemDateTime object

Win32_Directory.LastModified Property

Date that the object was last modified.

 Data Type is DateTime

 To Convert to a VBScript Date sub-type use WMI
WbemScripting.SWbemDateTime object

Chapter 07 Scripting Quicktest Professional Page 47

Dani Vainstein Working with Files Page 47 of 112

Win32_Directory.Name Property

Full path name of the file system object. For example:
c:\windows\system32\wbem.

 Data Type is String

Win32_Directory.Path Property

Path of the file. This includes leading and trailing backslashes.
Example: "\windows\system\"

 Data Type is String

Win32_Directory.Readable Property

Boolean value indicating whether you can read items in the folder.

 Date Type is Boolean

Win32_Directory.Status Property

Current status of the object. Various operational and non-operational statuses
can be defined.

Data Type is String

Win32_Directory.System Property

Boolean value indicating whether the object is a system folder.

 Date Type is Boolean

Win32_Directory.Writeable Property

Chapter 07 Scripting Quicktest Professional Page 48

Dani Vainstein Working with Files Page 48 of 112

Boolean value indicating whether you can write to the folder.

 Date Type is Boolean

Win32_Directory.TakeOwnerShip Method

The TakeOwnerShip method obtains ownership of the logical file specified in

the object path. If the logical file is actually a directory, then TakeOwnerShip
acts recursively, taking ownership of all the files and subdirectories the

directory contains.

Syntax

object.TakeOwnerShip()

 Returns a value of 0 (zero) if the request was successful, and any other

number to indicate an error.

Example

Dim oOutParams

Set oOutParams = GetObject("winmgmts:").ExecMethod _

 ("Win32_Directory.Name='C:\\wmi_demo'", "TakeOwnerShip")

Msgbox oOutParams.ReturnValue

Win32_Directory.Copy Method

The Copy method copies the logical directory entry file or directory specified in
the object path to the location specified by the input parameter. A copy is not

supported if overwriting an existing logical file is required.

Syntax

object.Copy(FileName)

Returns a value of 0 (zero) if the file was successfully renamed, and any other

number to indicate an error.

Arguments

Parameter Description

FileName Fully-qualified new name of or directory.

Win32_Directory.Rename Method

Chapter 07 Scripting Quicktest Professional Page 49

Dani Vainstein Working with Files Page 49 of 112

The Rename method renames the directory entry file specified in the object
path. A rename is not supported if the destination is on another drive or if

overwriting an existing logical file is required.

Syntax

object.Rename(FileName)

Returns a value of 0 (zero) if the file was successfully renamed, and any other
number to indicate an error.

Arguments

Parameter Description

FileName Fully-qualified new name of or directory.

Example

Dim oCollection, oItem

Dim nRes

Set oCollection = GetObject("winmgmts:").ExecQuery _

 ("Select * from Win32_Directory Where Name='c:\\wmi_demo'")

If oCollection.Count = 1 Then

 For Each oItem in oCollection

 MsgBox "Folder data before rename", _oItem.getObjectText_

 nRes = objItem.Rename("c:\wmi_demo1")

 If nRes > 0 Then

 Msgbox "Failed: error #" & nRes

 End If

 Next

End If

Win32_Directory.Delete Method

The Delete method will delete the logical file (or directory) specified in the

object path.

Syntax

object.Delete()

 Returns a value of 0 (zero) if the file was successfully deleted, and any

other number to indicate an error.

Win32_Directory.Compress Method

The Compress method compresses the logical directory entry file (or directory)
specified in the object path.

Chapter 07 Scripting Quicktest Professional Page 50

Dani Vainstein Working with Files Page 50 of 112

Syntax

object.Compress()

 Returns a value of 0 (zero) if the file was successfully compressed, and any

other number to indicate an error.

Win32_Directory.Uncompress Method

The Uncompress method uncompresses the logical directory entry file (or
directory) specified in the object path.

Syntax

object.Uncompress()

 Returns a value of 0 (zero) if the file was successfully compressed, and any
other number to indicate an error.

Win32_Directory.GetEffectivePermission Method

The GetEffectivePermission method determines whether the user has all
required permissions specified in the Permissions parameter for the

Win32_Directory object, directory, and share where the directory entry file is

located, if the file or directory are on a share.

Syntax

object.GetEffectivePermission(Permissions)

Arguments

Parameter Description

Permissions

A Number(uint32) specifying the Bitmap of permissions that the caller

can inquire about. To see the list of the permission parameters see Table

1 on page 43

 Returns true when the caller has the specified permissions, and false when
the caller does not have the specified permissions.

Win32_Directory Methods

For more information on Win32_Directory class methods you can look in the

following link:

http://msdn.microsoft.com/library/en-us/wmisdk/wmi/win32_directory.asp

Chapter 07 Scripting Quicktest Professional Page 51

Dani Vainstein Working with Files Page 51 of 112

The FileSystemObject Object

As the name implies, the FileSystemObject (FSO) is designed to help you
manage the file system. The FileSystemObject allows you to retrieve information

about essential file system elements, including disk drives, folders, and files; it
also includes methods that allow you to perform common administrative tasks,

such as copying, deleting, and moving files and folders. In addition, the

FileSystemObject enables you to read from and write to text files.

The FileSystemObject simplifies the task of dealing with any type of file input

and output and for dealing with the system file structure itself. Rather than
resorting to complex calls to the Win32 API. this object allows the developer to
easily handle files and navigate the underlying directory structures. This is

especially useful for those developers or administrators who are creating scripts

that are used for system administration or maintenance.

The FSO Object Model

The FSO object model also makes it easy to process files. When processing files,

the primary goal is to store data in a space- and resource-efficient, easy-to-access
format. You need to be able to create files, insert and change the data, and output
(read) the data. Since storing data in a database, such as Access or SQL Server,

adds a significant amount of overhead to your application, storing your data in a
text file may be the most efficient solution. You may prefer not to have this
overhead, or your data access requirements may not require all the extra features

associated with a full-featured database

To access the File System object model, you must first create an instance of the
FileSystemObject object, the only externally creatable object in the model. From

there, you can navigate through the object model.

Chapter 07 Scripting Quicktest Professional Page 52

Dani Vainstein Working with Files Page 52 of 112

Figure 10 The FileSystemObject object model

 FileSystemObject - Main object
Contains methods and properties that allow you to create, delete, gain
information about, and generally manipulate drives, folders, and files. Many of

the methods associated with this object duplicate those in other FSO objects;
they are provided for convenience.

 Drive – Object
Contains methods and properties that allow you to gather information about a

drive attached to the system, such as its share name and how much room is

available. Note that a "drive" isn't necessarily a hard disk, but can be a CD-
ROM drive, a RAM disk, and so forth. A drive doesn't need to be physically
attached to the system; it can be also be logically connected through a

network.

 Drives – Collection
Provides a list of the drives attached to the system, either physically or

logically. The Drives collection includes all drives, regardless of type.
Removable-media drives need not have media inserted for them to appear in
this collection.

 File - Object

Contains methods and properties that allow you to create, delete, or move a

file. Also allows you to query the system for a file name, path, and various
other properties.

 Files - Collection

Provides a list of all files contained within a folder.

 Folder – Object

Chapter 07 Scripting Quicktest Professional Page 53

Dani Vainstein Working with Files Page 53 of 112

Contains methods and properties that allow you to create, delete, or move
folders. Also allows you to query the system for folder names, paths, and

various other properties.

 Folders – Collection
Provides a list of all the folders within a Folder.

 TextStream – Object

Allows you to read and write text files.

Programming the FileSystemObject

To program with the FileSystemObject (FSO) object model:

 Use the CreateObject method to create a FileSystemObject object.

 Use the appropriate method on the newly created object.

 Access the object's properties.

The FSO object model is contained in the Scripting type library, which is located in

the Scrrun.dll file. Therefore, you must have Scrrun.dll in the appropriate
system directory on your system to use the FSO object model.

The FileSystemObject Properties and methods

The FileSystemObject object is at the top level of the File System object model

and is the only externally creatable object in the hierarchy; that is, it's the only

object you can create using the CreateObject function or the host object model's
object creation facilities. For example, the following code instantiates a

FileSystemObject object named fso:

Dim fso

Set oFso = CreateObject("Scripting.FileSystemObject")

The FileSystemObject object represents the host computer's file system as a
whole. Its members allow you to begin navigation into the file system, as well as

to access a variety of common file system services. For information about the

FileSystemObject object's properties and methods, see the entry for each
property and method.

FileSystemObject.Drives Property

Drives is a read-only property that returns the Drives collection; each member
of the collection is a Drive object, representing a single drive available on the
system. Using the collection object returned by the Drives property, you can

iterate all the drives on the system using a For...Next loop, or you can retrieve

an individual Drive object, which represents one drive on the system, by using
the Drives collection's Item method.

Example

Chapter 07 Scripting Quicktest Professional Page 54

Dani Vainstein Working with Files Page 54 of 112

Function ShowDriveList()

 Dim oFso, oDrive, oDrvColl

 Dim sTmp, sShareVol

 Set oFso = CreateObject("Scripting.FileSystemObject")

 Set oDrvColl = oFso.Drives

 For Each oDrive in oDrvColl

 sShareVol = Empty

 sTmp = sTmp & oDrive.DriveLetter & " - "

 If oDrive.DriveType = 3 Then

 sShareVol = oDrive.ShareName

 ElseIf oDrive.IsReady Then

 sShareVol = oDrive.VolumeName

 End If

 sTmp = sTmp & sShareVol & vbNewLine

 Next

 ShowDriveList = sTmp

End Function

Figure 11 - Drives Collection

FileSystemObject.BuildPath Method

The BuildPath method creates a single string representing a path and filename
or simply a path by concatenating the path parameter with the folder or
filename, adding, where required, the correct path separator for the host

system.

Syntax

object.BuildPath(path, name)

Arguments

Parameter Description

path
Required. Existing path to which name is appended. Path can be

absolute or relative and need not specify an existing folder.

name Required. Name being appended to the existing path.

 Path can be an absolute or relative path and doesn't have to include the

drive name.

 Neither Path nor Name has to currently exist.

Chapter 07 Scripting Quicktest Professional Page 55

Dani Vainstein Working with Files Page 55 of 112

 BuildPath is really a string concatenation method rather than a file system
method; it does not check the validity of the new folder or filename. If you
intend that the method's return value be a path, you should check it by

passing it to the FolderExists method; if you intend that the method's
return value be a path and filename, you should verify it by passing it to the
FileExists method.

 The only advantage to using the BuildPath function as opposed to

concatenating two strings manually is that the function selects the correct
path separator.

FileSystemObject.CopyFile Method

The CopyFile method copies a file or files from one folder to another.

Syntax

object.CopyFile(source, destination[, overwrite])

Arguments

Parameter Description

source
Required. Character string file specification, which can include wildcard
characters, for one or more files to be copied.

destination
Required. Character string destination where the file or files from source

are to be copied. Wildcard characters are not allowed.

overwrite

Optional. Boolean value that indicates if existing files are to be

overwritten. If true, files are overwritten; if false, they are not. The
default is true. Note that CopyFile will fail if destination has the read-

only attribute set, regardless of the value of overwrite.

 The default value for overwrite is True.

 The source path can be relative or absolute.

 The source filename can contain wildcard characters; the source path can't.

 Wildcard characters can't be included in destination.

Chapter 07 Scripting Quicktest Professional Page 56

Dani Vainstein Working with Files Page 56 of 112

 If the destination path or file is read-only, the CopyFile method fails,
regardless of the value of overwrite and generates runtime error 70,

"Permission Denied."

 If overwrite is set to False and the file exists in Destination, a trappable

error, runtime error 58, "File Already Exists", is generated.

 If an error occurs while copying more than one file, the CopyFile method

exits immediately, thereby leaving the rest of the files uncopied. There is no
rollback facility to undo copies made prior to the error.

 Both source and destination can include relative paths, that is, paths that
are relative to the current folder. The current folder is the folder in which

the script is stored. The symbol to indicate the parent of the current folder
is (..); the symbol to indicate the current folder is (.).

 source must include an explicit filename. For instance, under DOS, you

could copy all of the files in a directory with a command in the format of:

Copy c:\data c:\backup

or:

Copy c:\data\ c:\backup

 Which would copy all the files from the C:\data directory to C:\bckup. The
source argument cannot take any of these forms; instead, you must include

some filename component. For example, to copy all of the files from
C:\data, the CopyFile statement would take the form:

oFso.CopyFile "C:\data*.*", "C:\backup"

 To specify multiple files, the Source argument can include the * and ?
wildcard characters. Both are legacies from DOS. * matches any characters
in a filename that follow those characters that are explicitly specified. For

instance, a Source argument of File* matches File01.txt, File001.txt, and

File.txt, since all three filenames begin with the string "File"; the remainder
of the filename is ignored. ? is a wildcard that ignores a single character in a

filename comparison. For instance, a Source argument of Fil?01.txt copies

File01.txt and Fil_01.txt, since the fourth character of the filename is
ignored in the comparison.

 If you want the source and the destination directories to be the same, you
can copy only a single file at a time, since Destination does not accept

wildcard characters.

 If the path specified in Destination does not exist, the method does not
create it. Instead, it generates runtime error 76, "Path not found."

 If the user has adequate rights, the source or destination can be a network

path or share name. For example:

oFso.CopyFile "c:\Rootone*.*", "\\NTSERV1\d$\RootTwo\"

oFso.CopyFile "\\NTSERV1\RootTest\test.txt", "c:\RootOne"

 The CopyFile method copies a file or files stored in a particular folder. If
the folder itself has subfolders containing files, the method doesn't copy

these; use the CopyFolder method.

 The CopyFile method differs from the Copy method of the File object in
two ways:

 You can copy any file anywhere in a file system without having to first

instantiate it as a File object.

Chapter 07 Scripting Quicktest Professional Page 57

Dani Vainstein Working with Files Page 57 of 112

 You can copy multiple files in a single operation, rather than copying

only the file represented by the File object.

FileSystemObject.CopyFolder Method

The CopyFolder method copies the contents of one or more folders, including

their subfolders, to another location.

Syntax

object.CopyFolder(source, destination[, overwrite])

Arguments

Parameter Description

source
Required. Character string folder specification, which can include

wildcard characters, for one or more folders to be copied.

destination
Required. Character string destination where the folder and subfolders

from source are to be copied. Wildcard characters are not allowed.

overwrite

Optional. Boolean value that indicates if existing folders are to be

overwritten. If true, files are overwritten; if false, they are not. The
default is true.

 source must end with either a wildcard character or no path separator. If it

ends with a wildcard character, all matching subfolders and their contents
will be copied. Wildcard characters can be used in source only for the last

component.

 Wildcard characters can't be used in destination.

 All subfolders and files contained within the source folder are copied to
destination unless disallowed by the wildcard characters. That is, the
CopyFolder method is recursive.

 If destination ends with a path separator or source ends with a wildcard,
CopyFolder assumes that the folder stated in source exists in destination

or should otherwise be created. For example, given the following folder
structure:

C:\

 Rootone

 SubFolder1

 SubFolder2

 RootTwo

The code oFso.CopyFolder "c:\Rootone*", "C:\RootTwo" produces this folder
structure:

:\

 Rootone

 SubFolder1

 SubFolder2

 RootTwo

Chapter 07 Scripting Quicktest Professional Page 58

Dani Vainstein Working with Files Page 58 of 112

 SubFolder1

 SubFolder2

The code oFso.CopyFolder "c:\Rootone", "C:\RootTwo\" produces this folder
structure:

C:\

 Rootone

 SubFolder1

 SubFolder2

 RootTwo

 Rootone

 SubFolder1

 SubFolder2

 If the destination path or any of the files contained in destination are set to
read-only, the CopyFolder method fails, regardless of the value of

overwrite.

 If overwrite is set to False, and the source folder or any of the files

contained in source exists in destination, runtime error 58, "File Already
Exists," is generated.

 If an error occurs while copying more than one file or folder, the
CopyFolder function exits immediately, leaving the rest of the folders or

files uncopied. There is no rollback facility to undo the copies prior to the
error.

 If the user has adequate rights, both the source or destination can be a

network path or share name. For example:

oFso.CopyFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"

oFso.CopyFolder "\\NTSERV1\RootTest", "c:\RootOne"

FileSystemObject.CreateFolder Method

The CreateFolder method creates a single new folder in the path specified and

returns its Folder object.

Syntax

object.CreateFolder(foldername)

Arguments

Parameter Description

foldername Required. String expression that identifies the folder to create.

 Wildcard characters aren't allowed in foldername.

 foldername can be a relative or absolute path.

 If no path is specified in foldername, the current drive and directory are
used.

Chapter 07 Scripting Quicktest Professional Page 59

Dani Vainstein Working with Files Page 59 of 112

 If the last folder in foldername already exists, the method generates
runtime error, "File already exists."

 If foldername is read-only, the CreateFolder method fails.

 If foldername already exists, the method generates runtime error 58, "File
already exists."

 If the user has adequate rights, foldername can be a network path or share
name. For example:

oFso.CreateFolder "\\NTSERV1\d$\RootTwo\newFolder"

oFso.CreateFolder "\\NTSERV1\RootTest\newFolder"

You must use the Set statement to assign the Folder object to an object
variable. For example:

Dim oFso, oFolder

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oFolder = oFso.CreateFolder("MyFolder")

FileSystemObject.CreateTextFile Method

The CreateTextFile method creates a new file and returns its TextStream

object.

Syntax

object.CreateTextFile(filename[, overwrite[, unicode]])

Arguments

Parameter Description

filename Required. String expression that identifies the file to create.

overwrite

Optional. Boolean value that indicates whether you can overwrite an

existing file. The value is true if the file can be overwritten, false if it
can't be overwritten. If omitted, existing files are not overwritten.

unicode

Optional. Boolean value that indicates whether the file is created as a

Unicode or ASCII file. The value is true if the file is created as a Unicode
file, false if it's created as an ASCII file. If omitted, an ASCII file is

assumed.

 Wildcard characters aren't allowed in filename.

 filename can be a relative or absolute path.

 If no path is specified in filename, the script's current drive and directory

are used. If no drive is specified in filename, the script's current drive is
used.

 If the path specified in filename doesn't exist, the method fails. To prevent

this error, you can use the FileSystemObject object's FolderExists

method to insure that the path is valid.

 The default value for overwrite is False.

Chapter 07 Scripting Quicktest Professional Page 60

Dani Vainstein Working with Files Page 60 of 112

 If Unicode is set to True, the file is created in Unicode; otherwise, it's
created as an ASCII text file. The default value for Unicode is False.

 The newly created text file is automatically opened only for writing. If you
subsequently wish to read from the file, you must first close it and reopen it

in read mode.

 If the path referred to in filename is set to read-only, the CreateTextFile

method fails regardless of the value of overwrite.

 If the user has adequate rights, filename can contain a network path or
share name. For example:

oFso.CreateTextFile "\\NTSERV1\RootTest\myFile.doc"

 You must use the Set statement to assign the TextStream object to your

local object variable.

 The CreateTextFile method of the Folder object is identical in operation to

that of the FileSystemObject object.

FileSystemObject.DriveExists Method

The DriveExist method determines whether a given drive (of any type) exists

on the local machine or on the network. The method returns True if the drive
exists or is connected to the machine, and returns False if not.

Syntax

object.DriveExist(drivespec)

Arguments

Parameter Description

drivespec Required. A drive letter or a complete path specification.

 If drivespec is a Windows drive letter, it doesn't have to include the colon.
For example, "C" works just as well as "C:".

 Returns True if the drive exists or is connected to the machine, and returns
False if not.

 DriveExists doesn't note the current state of removable media drives; for

this, you must use the IsReady property of the Drive object representing
the given drive.

 If the user has adequate rights, DriveSpec can be a network path or share
name. For example:

If oFso.DriveExists("\\NTSERV1\d$") Then

This method is ideal for detecting any current drive around the network before
calling a function in a remote ActiveX server located on that drive.

Chapter 07 Scripting Quicktest Professional Page 61

Dani Vainstein Working with Files Page 61 of 112

FileSystemObject.FileExists Method

The FileExist method determines if a given file exists.

Syntax

object.FileExist(filespec)

Arguments

Parameter Description

filespec
Required. The name of the file whose existence is to be determined. A
complete path specification (either absolute or relative) must be

provided if the file isn't expected to exist in the current folder.

 Returns True if the file exists or is connected to the machine, and returns

False if not.

 filespec can't contain wildcard characters.

 filespec can include either an absolute or a relative path, that is, a path that
is relative to the current folder. The current folder is the folder in which the

script is running, or the folder specified in the "Start in" text box of the
shortcut used to launch the script. The symbol to indicate the parent of the
current folder is (..); the symbol to indicate the current folder is (.). If

filespec does not include a path, the current folder is used.

 If the user has adequate rights, filespec can be a network path or share
name. For example:

If oFso.FileExists("\\TestPath\Test.txt") Then

FileSystemObject.FolderExists Method

The FolderExist method determines whether a given folder exists; the method

returns True if the Folder exists, and returns False if not.

Syntax

object.FolderExist(folderspec)

Arguments

Parameter Description

folderspec
Required. The name of the folder whose existence is to be determined. A

complete path specification (either absolute or relative) must be

provided if the folder isn't expected to exist in the current folder.

Chapter 07 Scripting Quicktest Professional Page 62

Dani Vainstein Working with Files Page 62 of 112

 folderspec can't contain wildcard characters.

 folderspec cannot include a filename as well as a path. In other words, the

entire folderspec string can only include drive and path information.

 If folderspec does not include a drive specification, the current drive is
assumed.

 folderspec is interpreted as an absolute path if it begins with a drive name

and a path separator, and it is interpreted as an absolute path on the
current drive if it begins with a path separator. Otherwise, it is interpreted

as a relative path.

 If the user has adequate rights, folderspec can be a network path or share

name. For example:

If oFso.FolderExists("\\NTSERV1\d$\TestPath\") Then

Among its string manipulation methods, the Scripting Runtime library lacks one

that will extract a complete path from a path and filename.

FileSystemObject.GetAbsolutePathName Method

The GetAbsolutePathName method returns a complete and unambiguous

path from a provided path specification.

Syntax

object.GetAbsolutePathName(pathspec)

Arguments

Parameter Description

pathspec
Required. Path specification to change to a complete and unambiguous
path.

 (.) returns the drive letter and complete path of the current folder.

 (..) returns the drive letter and path of the parent of the current folder.

 If pathspec is simply a filename without a path, the method concatenates

the complete path to the current directory with the filename. For example, if

the current folder is C:\Documents\MyScripts, then the method call:

sFileName = oFso.GetAbsolutePathName("MyFile.txt")

 produces the string "C:\Documents\MyScripts\MyFile.txt".

 All relative pathnames are assumed to originate at the current folder. This

means, for example, that (.) returns the drive letter and complete path of
the current folder, and that (..) returns the drive letter and path of the
parent of the current folder.

 If a drive isn't explicitly provided as part of pathspec, it's assumed to be the
current drive.

 Wildcard characters can be included in pathspec at any point.

Chapter 07 Scripting Quicktest Professional Page 63

Dani Vainstein Working with Files Page 63 of 112

 An absolute path provides a complete route from the root directory of a

particular drive to a particular folder or file. In contrast, a relative path

describes a route from the current folder to a particular folder or file.

 For mapped network drives and shares, the method doesn't return the full

network address. Rather, it returns the fully qualified local path and locally

issued drive letter.

 The GetAbsolutePathName method is really a string conversion and
concatenation method, rather than a file system method. It merely returns
a string, but doesn't verify that a given file or folder exists in the path

specified.

FileSystemObject.GetBaseName Method

The GetBaseName method returns a complete and unambiguous path from a
provided path specification.

Syntax

object.GetBaseName(path)

Arguments

Parameter Description

path
Required. The path specification for the component whose base name is

to be returned.

 The file extension of the last element in path isn't included in the returned
string.

 GetBaseName doesn't verify that a given file or folder exists in path.

 In stripping the "file extension" and returning the base name of path,
GetBaseName has no intelligence. That is, it doesn't know whether the last

component of path is a path or a filename. If the last component includes

one or more dots, it simply removes the last one, along with any following
text. Hence, GetBaseName returns a null string for a path of (.) and it
returns (.) for a path of (..). It is, in other words, really a string

manipulation function, rather than a file function.

FileSystemObject.GetDrive Method

The GetDrive method obtains a reference to a Drive object for the specified

drive.

Syntax

Chapter 07 Scripting Quicktest Professional Page 64

Dani Vainstein Working with Files Page 64 of 112

object.GetDrive(drivespec)

Arguments

Parameter Description

drivespec

Required. The drivespec argument can be a drive letter (c), a drive letter
with a colon appended (c:), a drive letter with a colon and path

separator appended (c:\), or any network share specification

(\\computer2\share1).

 If drivespec is a local drive or the letter of a mapped drive, it can consist of

only the drive letter (e.g., "C"), the drive letter with a colon ("C:"), or the

drive letter and path to the root directory (e.g., "C:\") without generating a
runtime error.

 If drivespec is a share name or network path, GetDrive ensures that it

exists as part of the process of creating the Drive object; if it doesn't, the
method generates runtime error 76, "Path not found."

 If the specified drive isn't connected or doesn't exist, runtime error 67,
"Device unavailable," occurs.

 Individual drive objects can be retrieved from the Drives collection by
using the Drives property. This is most useful, though, if you want to

enumerate the drives available on a system. In contrast, the GetDrive
method provides direct access to a particular Drive object.

 If you are deriving the drivespec string from a path, you should first use
GetAbsolutePathName to insure that a drive is present as part of the

path. Then you should use FolderExists to verify that the path is valid

before calling GetDriveName to extract the drive from the fully qualified
path. For example:

Dim oFso, oDrive

Set oFso = CreateObject("Scripting.FileSystemObject")

sPath = oFso.GetAbsolutePathName(sPath)

If oFso.FolderExists(sPath) Then

 Set oDrive = oFso.GetDrive(oFso.GetDriveName(sPath))

End If

 If drivespec is a network drive or share, you should use the DriveExists

method to confirm the required drive is available prior to calling the

GetDrive method.

 You must use the Set statement to assign the Drive object to a local object
variable.

FileSystemObject.GetDriveName Method

The GetDriveName method returns the drive name of a given path.

Syntax

Chapter 07 Scripting Quicktest Professional Page 65

Dani Vainstein Working with Files Page 65 of 112

object.GetDriveName(path)

Arguments

Parameter Description

path

Required. The drivespec argument can be a drive letter (c), a drive letter

with a colon appended (c:), a drive letter with a colon and path
separator appended (c:\), or any network share specification

(\\computer2\share1).

 If the drive name can't be determined from the given path, a zero-length

string (" ") is returned.

 For local and mapped drives, GetDriveName appears to look for the colon

as a part of the drive's name to determine whether a drive name is present.
For network drives, it appears to look for the computer name and drive

name.

 GetDriveName is really a string-parsing method rather than a file system
method. In particular, it does not verify that the drive name that it extracts

from path actually exists on the system.

 path can be a network drive or share.

FileSystemObject.GetExtensionName Method

The GetExtensionName method returns the extension of the file element of a
given path.

Syntax

object.GetExtensionName(path)

Arguments

Parameter Description

path
Required. The path specification for the component whose extension
name is to be returned.

 If the extension in path can't be determined, a zero-length string (" ") is
returned.

 GetExtensionName is a string parsing method rather than a file system
method. It does not verify that path is valid, does not verify that the

filename designated in path exists, and does not even guarantee that the
value it returns is a valid file extension. In other words,

GetExtensionName has no intelligence. It simply parses a string and

returns the text that follows the last dot of the last element.

Chapter 07 Scripting Quicktest Professional Page 66

Dani Vainstein Working with Files Page 66 of 112

 path can be a network drive or share.

FileSystemObject.GetFile Method

The GetFile method returns a reference to a File object.

Syntax

object.GetFile(filespec)

Arguments

Parameter Description

filespec Required. The filespec is the path (absolute or relative) to a specific file.

 filespec can be an absolute or a relative path.

 If filespec is a share name or network path, GetFile ensures that the drive

or share exists as part of the process of creating the File object.

 If any part of the path in filespec can't be contacted or doesn't exist, an

error occurs.

 The object returned by GetFile is a File object, not a TextStream object. A
File object isn't an open file; the point of the File object is to perform
methods such as copying or moving files and interrogating a file's

properties. Although you can't write to or read from a File object, you can

use the File object's OpenAsTextStream method to obtain a TextStream
object. You can also save yourself a step by calling the FileSystemObject

object's OpenTextFile method.

 You should first use GetAbsolutePathName to create the required filespec
string.

 If filespec includes a network drive or share, you could use the DriveExists

method to confirm that the required drive is available prior to calling the
GetFile method.

 Since GetFile generates an error if the file designated in filespec doesn't

exist, you should call the FileExists method before calling GetFile.

 You must use the Set statement to assign the File object reference to a
local object variable.

FileSystemObject.GetFileName Method

The GetFileName method returns the filename element of a given path.

Syntax

object.GetFileName(pathspec)

Chapter 07 Scripting Quicktest Professional Page 67

Dani Vainstein Working with Files Page 67 of 112

Arguments

Parameter Description

pathspec Required. The path (absolute or relative) to a specific file.

 If the filename can't be determined from the given pathspec, a zero-length

string (" ") is returned.

 pathspec can be a relative or absolute reference.

 GetFileName doesn't verify that a given file exists in pathspec.

 pathspec can be a network drive or share.

 Like all the Getx Name methods of the FileSystemObject object, the
GetFileName method is more a string manipulation routine that an object-
related routine. GetFileName has no built-in intelligence (and, in fact,

seems to have even less intelligence than usual for this set of methods); it

simply assumes that the last element of the string that is not part of a drive
and path specified is in fact a filename. For example, if Path is C:\Windows,
the method returns the string "Windows"; if Path is C:\Windows\ (which

unambiguously denotes a folder rather than a filename), the method still
returns the string "Windows

FileSystemObject.GetFileVersion Method

The GetFileName method retrieves version information about the file specified

in pathspec.

Syntax

object.GetFileVersion(pathspec)

Arguments

Parameter Description

pathspec Required. The path (absolute or relative) to a specific file.

 pathspec should include the path as well as the name of the file. The path

component can be either an absolute or a relative path to the file.

 If path information is omitted, VBScript attempts to find pathspec in the
current folder.

 This function reports version information in the format:
Major_Version.Minor_Version.0.Build

 If a file does not contain version information, the function returns an empty
string (" ").

 The files that can contain version information are executable files (.exe) and

Chapter 07 Scripting Quicktest Professional Page 68

Dani Vainstein Working with Files Page 68 of 112

dynamic link libraries (.dll).

 If you're want to replace a private executable or DLL with another, be

particularly careful with version checking, since it has been a particularly
serious source of error. Ensuring that the new version of the file should be
installed requires that any one of the following conditions be true:

 It has the same major and minor version but a later build number than

the existing file.

 It has the same major version but a greater minor version number than
the existing file.

 It has a higher version number than the existing file.

 It's also a good idea to copy the replaced file to a backup directory.

 If you're thinking to replace a system executable or DLL with another, it's
best to use a professional installation program for this purpose.

 Although this function is listed in the type library and is actually
implemented in the Scripting Runtime, no documentation for it is available

in the HTML Help file.

FileSystemObject.GetFolder Method

The GetFolder method returns a reference to a Folder object.

Syntax

object.GetFolder(folderspec)

Arguments

Parameter Description

folderspec Required. The folderspec is the path to a specific folder.

 folderspec can be an absolute or relative path.

 If folderspec is a share name or network path, GetFolder ensures that the
drive or share exists as part of the process of returning the Folder object.

 If any part of folderspec doesn't exist, an error occurs.

 You should first use GetAbsolutePathName to create the required
FolderPath string.

 If FolderPath includes a network drive or share, you could use the

DriveExists method to confirm the required drive is available prior to

calling the GetFolder method.

 Since GetFolder requires that FolderPath is the path to a valid folder, you

should call the FolderExists method to verify that FolderPath exists.

 The GetFolder method allows you to directly obtain an object reference to
a particular folder. You can also use the Item property of the Folders

collection object for cases in which you must navigate the file system to

reach a particular folder, or for those cases in which you're interested in

Chapter 07 Scripting Quicktest Professional Page 69

Dani Vainstein Working with Files Page 69 of 112

enumerating the subfolders belonging to a particular folder.

 You must use the Set statement to assign the Folder object reference to a

local object variable.

FileSystemObject.GetParentFolderName Method

The GetParentFolderName method returns the folder name immediately

preceding the last element of a given path. In other words, if path ends in a
filename, the method returns the path to the folder containing that file. If path

ends in a folder name, the method returns the path to that folder's parent.

Syntax

object.GetFolderParentName(path)

Arguments

Parameter Description

path
Required. The path specification for the component whose parent folder

name is to be returned.

 If the parent folder name can't be determined from path, a zero-length
string (" ") is returned.

 path can be a relative or absolute reference.

 GetParentFolderName doesn't verify that any element of Path exists.

 Path can be a network drive or share.

 GetParentFolderName assumes that the last element of the string that

isn't part of a drive specifier is the parent folder. It makes no other check
than this. As with all the Getx Name methods of the FileSystemObject
object, the GetParentFolderName method is more a string parsing and

manipulation routine than an object-related routine.

FileSystemObject.GetSpecialFolder Method

The GetParentFolderName method returns a reference to a Folder object of
one of the three special system folders: System, Temporary, and Windows.

Syntax

object.GetSpecialFolder(folderspec)

Arguments

Parameter Description

folderspec
Required. The name of the special folder to be returned. Can be any of

the constants shown in the Settings section.

Chapter 07 Scripting Quicktest Professional Page 70

Dani Vainstein Working with Files Page 70 of 112

Settings

Constant Val Description

WindowsFolder 0 Contains files installed by the Windows operating system.

SystemFolder 1 Contains libraries, fonts, and device drivers.

TemporaryFolder 2
Used to store temporary files. Its path is found in the TMP

environment variable.

 As the previous table shows, the Scripting Runtime type library defines

constants of the SpecialFolderConst enumeration that can be used in
place of their numeric equivalents. You can use them in your scripts in
either of two ways. You can define the constants yourself by adding the

following code to your script:

Const WindowsFolder = 0

Const SystemFolder = 1

Const TemporaryFolder = 2

 You can use the Set statement to assign the Folder object reference to a
local object variable. However, if you're interested only in retrieving the

path to the special folder, you can do it with a statement like the following:

Dim oFso, oFolder, sPath

Set oFolder = oFso.GetSpecialFolder(1) 'Folder object

sPath = oFso.GetSpecialFolder(FolderConst) 'Folder name

or:

sPath = oFso.GetSpecialFolder(FolderConst).Path

 The first statement works because the folderspec property is the Folder

object's default property. Since the assignment isn't to an object variable,
it's the default property's value, rather than the object reference, that is

assigned to sPath.

Figure 12 Set a SpecialFolder

Chapter 07 Scripting Quicktest Professional Page 71

Dani Vainstein Working with Files Page 71 of 112

FileSystemObject.GetTempName Method

The GetTempName method returns a system-generated temporary file or
folder name.

Syntax

object.GetTempName()

 GetTempName doesn't create a temporary file or folder; it simply provides

a name you can use with the CreateTextFile method.

 As a general rule, you shouldn't create your own temporary filenames.

Windows provides an algorithm within the Windows API to generate the
special temporary file and folder names so that it can recognize them later.

 If you are calling GetTempName as the first step in creating a temporary
file, you can also call the GetSpecialFolder method to retrieve the path of

the temporary directory, as follows:

Option Explicit

Const TemporaryFolder = 2

Dim sTempPath, oFolder, oFso

Set oFso = CreateObject("Scripting.FileSystemObject")

sTempPath = oFso.GetSpecialFolder(TemporaryFolder)

sTempPath = oFso.BuildPath(sTempPath, oFso.GetTempName)

Msgbox sTempPath

FileSystemObject.MoveFile Method

The MoveFile method moves a file from one folder to another.

Syntax

object.MoveFile(source, destination)

Arguments

Parameter Description

source
Required. The path to the file or files to be moved. The source argument
string can contain wildcard characters in the last path component only.

destination
Required. The path where the file or files are to be moved. The

destination argument can't contain wildcard characters.

 If source contains wildcard characters or if destination ends in a path

separator, destination is interpreted as a path; otherwise, its last

component is interpreted as a filename.

Chapter 07 Scripting Quicktest Professional Page 72

Dani Vainstein Working with Files Page 72 of 112

 If the destination file exists, an error occurs.

 source can contain wildcard characters, but only in its last component. This

allows multiple files to be moved.

 destination can't contain wildcard characters.

 Both source and destination can be either absolute or relative paths.

 Both source and destination can be network paths or share names.

 MoveFile resolves both arguments before beginning the operation.

 Any single file move operation is atomic; that is, any file removed from
source is copied to destination. However, if an error occurs while multiple

files are being moved, the execution of the function terminates, but files
already moved aren't moved back to their previous folder. If a fatal system
error occurs during the execution of this method (like a power failure), the

worst that can happen is that the affected file is copied to the destination
but not removed from the source. There is no rollback capabilities built into
the MoveFile method, since, because the copy part of this two-stage

process is executed first, the file can't be lost. But while there is no chance

of losing data, particularly in multi-file operations, it's more difficult to
determine whether the move operations have succeeded. This is because an
error at any time while files are being moved causes the MoveFile method

to be aborted.

 You can use the GetAbsolutePath, FolderExists, and FileExists methods

prior to calling the MoveFile method to ensure its success.

 The MoveFile method differs from the File object's Move method by

allowing you to directly designate a file to be moved rather than requiring
that you first obtain an object reference to it. It also allows you to move
multiple files rather than the single file represented by the File object.

FileSystemObject.MoveFolder Method

The MoveFolder method moves a folder along with its files and subfolders

from one location to another.

Syntax

object.MoveFolder(source, destination)

Arguments

Parameter Description

source

Required. The path to the folder or folders to be moved. The source

argument string can contain wildcard characters in the last path
component only.

destination
Required. The path where the folder or folders are to be moved. The

destination argument can't contain wildcard characters.

Chapter 07 Scripting Quicktest Professional Page 73

Dani Vainstein Working with Files Page 73 of 112

FileSystemObject.OpenTextFile Method

The OpenTextFile method opens (and optionally first creates) a text file for
reading or writing.

Syntax

object.OpenTextFile(filename, iomode, create, format)

Arguments

Parameter Description

filename Required. String expression that identifies the file to open.

iomode

Optional. Can be one of three constants: ForReading, ForWriting, or

ForAppending.

For a list of IOMode Arguments see Table 2 on page 111.

create
Optional. Boolean value that indicates whether a new file can be created
if the specified filename doesn't exist. The value is True if a new file is

created, False if it isn't created. If omitted, a new file isn't created.

format

Optional. One of three Tristate values used to indicate the format of the

opened file. If omitted, the file is opened as ASCII.
For a list of Format Arguments see Table 3 on page 111.

 The path element of filename can be relative or absolute.

 The default iomode setting is ForReading (1).

 The default format setting is ASCII (False).

 If another process has opened the file, the method fails with a "Permission
Denied" error. Both source and destination can be either absolute or relative
paths.

 Both source and destination can be network paths or share names.

 You can use the GetAbsolutePath and FileExists methods prior to calling

the OpenTextFile method to ensure its success.

 The path element of filename can be a network path or share name.

 As the table listing values for the iomode parameter shows, the Scripting
Runtime type library defines constants of the iomode enumeration that can

be used in place of their numeric equivalents. You can use them in your
scripts in either of two ways. You can define the constants yourself by

adding the IOMode Arguments to your script:

 The value of iomode can be only that of a single constant. Assigning more
than one value generates runtime error 5, "Invalid procedure call or

argument."

 As the table listing values for the format parameter shows, the Scripting
Runtime type library defines constants of the Tristate enumeration that can

be used in place of their numeric equivalents. You can use them in your

scripts in either of two ways. You can define the constants yourself by
adding the Format Arguments to your script:

Chapter 07 Scripting Quicktest Professional Page 74

Dani Vainstein Working with Files Page 74 of 112

Drives Collection Object

Figure 13 Drives collection

All drives connected to the current machine are included in the Drives collection,

even those that aren't currently ready (like removable media drives with no media

inserted in them). The Drives collection object is read-only.

The Drives collection cannot be created; instead, it is returned by the Drives

property of the FileSystemObject object, as the following code fragment
illustrates:

Dim oFso, oDrives

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oDrives = oFso.Drives

For an overview of the file system object model, including the library reference
needed to access it, see Figure 10 - "File System Object Model" on page 52.

Creatable: No

Returned By

 FileSystemObject.Drives property

Drives.Item Property

The Item property returns a Drive object whose key is drive letter.

Syntax

object.Item(key)

Arguments

Parameter Description

key Required. The drive letter.

 This is an unusual collection, since the drive's index value (its ordinal

position in the collection) can't be used; attempting to do so generates

runtime error 5, "Invalid procedure call or argument." Since attempting to
retrieve a Drive object for a drive that doesn't exist generates runtime

error 68, it's a good idea to call the FileSystemObject object's

DriveExists method beforehand.

Chapter 07 Scripting Quicktest Professional Page 75

Dani Vainstein Working with Files Page 75 of 112

Drives.Count Property

The Count property returns the number of Drive objects in the collection.

 Return data type is Long

Drive Object

Figure 14 Drive Object

Chapter 07 Scripting Quicktest Professional Page 76

Dani Vainstein Working with Files Page 76 of 112

 Represents a single drive connected to the current machine, including a
network drive. By using the Drive object, you can interrogate the system

properties of any drive. In addition, you can use the Folder object returned by
the Drive object's RootFolder property as your foothold into the physical
drive's file system.

 A new instance of the Drive object cannot be created. Instead, a Drive object

that represents an existing physical drive typically is retrieved from the

FileSystemObject object's Drives collection, as in the following code
fragment, which retrieves an object reference that represents the C: drive:

Dim oFso, oDrive

Set oFso = CreateObject("Scripting.FileSystemObject")

set oDrive = oFso.Drives("C")

 For an overview of the File System object model, including the library reference

needed to access it, see Figure 10 - "File System Object Model" on page 52.

 Creatable : No

 Returned By

 File.Drive property

 Folder.Drive property

 FileSystemObject.Drives.Item property

 FileSystemObject.GetDrive method

Drive.AvailableSpace Property

The AvailableSpace property returns the amount of space available to a user

on the specified drive or network share.

 Reports the amount of free space on the drive, in bytes. To report the
amount of available space in kilobytes, divide this value by 1,024. To report

the amount of available space in megabytes, divide this value by 1,048,576
(1,024 * 1,024).

 Returns the number of bytes unused on the disk. Typically, the
AvailableSpace property returns the same number as the Drive object's

FreeSpace property, although differences may occur on systems that
support quotas.

 In early versions of the Scripting Runtime, AvailableSpace was capable

of storing only values that ranged from 0 to 2^31, or 2,147,483,648; in
other words, in the case of drives with over 2 GB free, it failed to accurately
report the amount of available free space.

 The AvailableSpace property reports the amount of space available to the

user running the script. If disk quotas are in use on the drive, this value

might be less than the total amount of free space available on the drive.

 In order to check the amount of available space on the drive, the drive must

be ready. Otherwise, an error is likely to result. This makes it worthwhile to
check the value of the IsReady property before attempting to retrieve a
drive's free space, particularly if your script is iterating the Drives

Chapter 07 Scripting Quicktest Professional Page 77

Dani Vainstein Working with Files Page 77 of 112

collection.

Drive.DriveLetter Property

The DriveLetter property returns the drive letter of a physical local drive or a

network share. Read-only.

 The drive letter used for this drive on the current machine (e.g., C). In

addition, its value is an empty string ("") if the drive is a network share that

has not been mapped to a local drive letter.

 Drive letter assigned to the drive. The drive letter does not include the
trailing colon; thus, a floppy disk drive will be reported as A rather than A:

Drive.DriveType Property

The DriveType property returns a value indicating the type of a specified

drive.

 Integer value indicating the type of drive. Values include:

 1 - Removable drive

 2 - Fixed drive (hard disk)

 3 - Mapped network drive

 4 - CD-ROM drive

 5 - RAM disk

 A value (see the following table) indicating the type of drive. Any remote

drive is shown only as remote. For example, a shared CD-ROM or Zip drive
that is both remote and removable is shown simply as remote (i.e., it

returns a value of 3) on any machine other than the machine on which it's

installed.

 For a list of DriveType Constans see Table 3 on page 111

Drive.FileSystem Property

The FileSystem property returns the type of file system in use for the specified
drive.

 The installed file-system; returns FAT, FAT32, NTFS, or CDFS. In order to

determine that the file-system in place, a device must be present on

removable drives or runtime error 71, "Disk not ready," results.

Chapter 07 Scripting Quicktest Professional Page 78

Dani Vainstein Working with Files Page 78 of 112

Drive.FreeSpace Property

The FreeSpace property returns the amount of free space available to a user
on the specified drive or network share.

 Reports the amount of free space on the drive, in bytes. To report the
amount of free space in kilobytes, divide this value by 1,024. To report the

amount of free space in megabytes, divide this value by 1,048,576 (1,024 *

1,024).

 The number of bytes unused on the disk. Typically, its value is the same as
the Drive object's AvailableSpace property, although differences may
occur on computer systems that support quotas.

 In early versions of the scripting Runtime, the property was capable of
storing only values that ranged from 0 to 231, or 2,147,483,648. In other

words, in the case of drives with over 2 GB free, it failed to accurately

report the amount of available free space.

 Unlike the AvailableSpace property, FreeSpace reports the total amount

of free space available on the drive, regardless of whether disk quotas have
been enabled.

Drive.IsReady Property

The IsReady property returns True if the specified drive is ready; False if it is
not.

 Indicates whether a drive is accessible.

 For hard drives, this should always return True. For removable media

drives, True is returned if media is in the drive; otherwise, False is
returned.

 A number of Drive object properties raise an error if the drive they
represent is not ready. You can use the IsReady property to check the
status of the drive and prevent your script from raising an error.

Drive.Path Property

The Path property returns the path for a specified file, folder, or drive.

 The drive name followed by a colon (e.g., C:). (Note that it does not include
the root folder.) This is the default property of the Drive object.

 For local drives, this will be the drive letter and the trailing colon (for

example, A:). For mapped network drives, this will be the Universal Naming

Chapter 07 Scripting Quicktest Professional Page 79

Dani Vainstein Working with Files Page 79 of 112

Convention (UNC) path for the drive (for example, \\Server1\SharedFolder).

Drive.RootFolder Property

The RootFolder property returns a Folder object representing the root folder

of a specified drive.

 Gives you access to the rest of the drive's filesystem by exposing a Folder
object representing the root folder.

Drive.SerialNumber Property

Description

The SerialNumber property returns the decimal serial number used to

uniquely identify a disk volume.

 Serial number assigned to the drive by the manufacturer. For floppy disk

drives or mapped network drives, this value will typically be 0.

Drive.ShareName Property

The ShareName property returns the network share name for a specified
drive.

 For a network share, returns the machine name and share name in UNC

format (e.g., \NTSERV1\TestWork). If the Drive object does not represent a
network drive, the ShareName property returns a zero-length string ("").

Drive.TotalSize Property

The TotalSize property returns the total space, in bytes, of a drive or network

share.

 The total size of the drive in bytes. In early versions of the Scripting

Runtime, the TotalSize property was capable of storing only values that
ranged from 0 to 231, or 2,147,483,648. In other words, in the case of
drives larger than 2 GB, it failed to accurately report the total drive size.

 In order to check the amount of total space on the drive, the drive must be
ready. Otherwise, a "Disk not ready" error is likely to result. This makes it

worthwhile to check the value of the IsReady property before attempting
to retrieve a drive's free space, particularly if your script is iterating the

Chapter 07 Scripting Quicktest Professional Page 80

Dani Vainstein Working with Files Page 80 of 112

Drives collection.

Drive.VolumeName Property

The VolumeName property sets or returns the volume name of the specified

drive (if any).

 The drive's volume name, if one is assigned (e.g., DRIVE_C). If a drive or

disk has not been assigned a volume name, the VolumeName property

returns an empty string (""). This is the only read/write property supported
by the Drive object.

 In order to retrieve the volume name, the drive must be ready. Otherwise,
a "Disk not ready" error is likely to result. This makes it worthwhile to check

the value of the IsReady property before attempting to retrieve a drive's
volume name, particularly if your script is iterating the Drives collection.

Folders Collection Object

Figure 15 Drives collection

The Folders collection object is a container for Folder objects. Normally, you'd
expect to access a single object from the collection of that object; for example,
you'd expect to access a Folder object from the Folders collection object.

However, things are the other way around here: you access the Folders collection
object from an instance of a Folder object. This is because the first Folder object
you instantiate from the Drive object is a Root Folder object, and from it you

instantiate a subfolders collection. You can then instantiate other Folder and

subfolder objects to navigate through the drive's filesystem.

The Folders collection is a subfolder of any Folder object. For instance, the top-
level Folders collection (representing all of the folders in the root directory of a
particular drive) can be can be instantiated as follows:

Dim oFso, oFolders

Set oOFso = CreateObject("Scripting.FileSystemObject")

Set oFolders = oOFso.Drives("C").RootFolder.SubFolders

The Folders collection object is one of the objects in the File System object
model; see Figure 10 - "File System Object Model" on page 52.

 Creatable : No

 Returned By:

 Folders.SubFolders

Chapter 07 Scripting Quicktest Professional Page 81

Dani Vainstein Working with Files Page 81 of 112

Folders.Count Property

The Count property returns the number of Folders objects in the collection.

 Return Data Type is Long

Folders.Item Property

The Item property returns a Folder object whose key is folder name.

Syntax

object.Item(key)

Arguments

Parameter Description

key Required. The folder name.

 Retrieves a particular Folder object from the Folders collection object. You
can access an individual folder object by providing the exact name of the
folder without its path. However, you can't access the item using its ordinal

number. For example, the following statement returns the Folder object

that represents the Root_Two folder:

Set oSubFolder = oSubFolders.Item("Root_Two")

Folders.Add Method

The Add method adds a new folder to a Folders collection.

Syntax

object.Add(foldername)

Arguments

Parameter Description

foldername Required. The name of the new Folder being added.

 You can't use a path specifier in foldername; you can use only the name of
the new folder.

 The location of the new folder is determined by the parent to which the
Folders collection object belongs. For example, if you are calling the Add

method from a Folders collection object that is a child of the root Folder

Chapter 07 Scripting Quicktest Professional Page 82

Dani Vainstein Working with Files Page 82 of 112

object, the new folder is created in the root (i.e., it's added to the root's
subfolders collection). For example:

Dim oFso, oRoot, oChild, oRootFolders

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oRoot = oFso.Drives("C").RootFolder

Set oRootFolders = oRoot.SubFolders

Set oChild = oRootFolders.Add("Downloads")

Set oChlid = Nothing : Set oRootFolders = Nothing : Set oRoot = Nothing

Set oFso = Nothing

Chapter 07 Scripting Quicktest Professional Page 83

Dani Vainstein Working with Files Page 83 of 112

Folder Object

 The Folder object allows you to interrogate the system properties of the folder
and provides methods that allow you to copy, move, and delete the folder. You

can also create a new text file within the folder.

 The Folder object is unusual because with it, you can gain access to a Folders

collection object. The more usual method is to extract a member of a collection
to gain access to the individual object. However, because the Drive object
exposes only a Folder object for the root folder, you have to extract a Folders

collection object from a Folder object (the collection represents the subfolders
of the root). From this collection, you can navigate downward through the
filesystem to extract other Folder objects and other Folders collections. A
Boolean property, IsRootFolder, informs you of whether the Folder object

you are dealing with currently is the root of the drive.

 The Folder object is one of the objects in the Filesystem object model; for an

overview of the model, see Figure 10 - "File System Object Model" on page 52.

 Creatable : No

 Returned By

 Drive.RootFolder property

 FileSystemObject.CreateFolder method

 FileSystemObject.GetFolder method

 File.ParentFolder property

 Folder.SubFolders.Item property

 Folder.ParentFolder property

 Folders.Add method

Folder.Attributes Property

Figure 16 Attributes bitmap representation

The Attributes property sets or returns the attributes of files or folders.
Read/write or read-only, depending on the attribute.

Syntax

object.Attributes

Chapter 07 Scripting Quicktest Professional Page 84

Dani Vainstein Working with Files Page 84 of 112

 More information about bitmaps see Working with Bitmaps on page 12

 As Figure 16 shows, the Scripting Runtime type library defines constants of
the FileAttribute enumeration that can be used in place of their numeric
equivalents. You can use them in your scripts in either of two ways. You can
define the constants yourself by adding the following code to your script or

add the constants on an external vbs file.

Const Normal = 0

Const ReadOnly = 1

Const Hidden = 2

Const System = 4

Const Directory = 16

Const Archive = 32

Const Alias = 64

Const Compressed = 128

You can determine which flag is set by using a logical AND along with the value
returned by the property and the value of the flag you'd like to test. For

example:

If fso.Attributes And ReadOnly Then ' Folder is read-only

To clear a flag, And the value of the Attributes property with a Long in which
the flag you want to clear is turned off. For example, the following code clears a
Folder object's read-only flag:

fso.Attributes = fso.Attributes And (Not ReadOnly)

Folder.DateCreated Property

The DateCreated returns the date and time that the specified file or folder was
created.

 The date and time the folder was created.

Folder.DateLastAccessed Property

The DateLasAccessed returns the date and time that the specified file or
folder was last accessed.

 The date and, if it's available from the operating system, the time that the
folder was last accessed.

Folder.DateLastModified Property

Chapter 07 Scripting Quicktest Professional Page 85

Dani Vainstein Working with Files Page 85 of 112

The DateLasModified returns the date and time that the specified file or folder
was last modified.

 The date and time the folder was last modified.

Folder.Drive Property

The Drive returns the drive letter of the drive or the drive object on which the
specified file or folder resides.

 Returns a Drive object representing the drive on which the folder resides;
the property is read-only.

Option Explicit

Dim fso, oFolder, oDrive

Dim sDrive

Set fso = CreateObject("Scripting.FileSystemObject")

Set oFolder = fso.GetFolder("C:\My Documents\Book\V1")

sDrive = oFolder.Drive ' Returns C:

'--- Or

sDrive = oFolder.Drive.DriveLetter ' Returns C

'--- Retrieve the drive object

Set oDrive = oFolder.Drive ' Returns the drive object

Figure 17 Drive object

Folder.Files Property

The Files property returns a Files collection consisting of all File objects
contained in the specified folder, including those with hidden and system file
attributes set.

Chapter 07 Scripting Quicktest Professional Page 86

Dani Vainstein Working with Files Page 86 of 112

Folder.IsRootFolder Property

The Files property returns True if the specified folder is the root folder; False
if it is not.

Folder.Name Property

The Name property Sets or returns the name of a specified file or folder.

Folder name, not including path information. For example, the Name of the
folder C:\Windows\System32 is System32.

Folder.ParentFolder Property

The ParentFolder property returns the folder object for the parent of the
specified file or folder.

 Returns a folder object representing the folder that's the parent of the

current folder. It returns Nothing if the current object is the root folder of
its drive (i.e., if its IsRootFolder property is True).

Folder.Path Property

The Path property returns the path for a specified file, folder, or drive.

 Returns the complete path of the current folder, including its drive. It is the
default property of the Folder object.

Folder.ShortName Property

The ShortName property returns the short name used by programs that

require the earlier 8.3 naming convention.

 Returns a DOS 8.3 folder name without the folder's path. The property is

read-only.

Chapter 07 Scripting Quicktest Professional Page 87

Dani Vainstein Working with Files Page 87 of 112

Folder.ShortPath Property

The ShortPath property returns the short path used by programs that require
the earlier 8.3 file naming convention.

Folder.Size Property

Description

The Size property returns the size, in bytes, of all files and subfolders

contained in the folder.

 Returns the total size of all files, subfolders, and their contents in the folder

structure, starting with the current folder. The property is read-only.

 In previous versions of the Scripting Runtime, this property failed to
accurately report the size of a folder whose files and subfolders occupied

more than 2 GB of disk space.

 Attempting to retrieve the value of a Folder object's Size property when
that folder is a drive's root folder (that is, its IsRootFolder property

returns True) generates a runtime error.

Folder.SubFolders Property

The Size property returns a Folders collection consisting of all folders
contained in a specified folder, including those with hidden and system file

attributes set.

Folder.Type Property

The Type property returns information about the type of a file or folder.

 Returns the description of a filesystem object, as recorded in the system
registry. For Folder objects, the property always returns "File Folder."

Folder.Copy Method

The Copy method copies the current folder and its contents, including other
folders, to another location.

Syntax

object.Copy (destination, overwrite)

Chapter 07 Scripting Quicktest Professional Page 88

Dani Vainstein Working with Files Page 88 of 112

Arguments

Parameter Description

destination Required. Destination where the file or folder is to be copied.

overwrite
Optional. Boolean value that is True (default) if existing files or

folders are to be overwritten; False if they are not.

 Wildcard characters can't be used in destination.

 The folder and all subfolders and files contained in the source folder are
copied to destination. That is, the Copy method is recursive.

 Unlike the FileSystemObject.CopyFolder method, there is no operational
difference between ending destination with a path separator or not.

 If the destination path or any of the files contained in the destination
structure are set to read-only, the Copy method will fail regardless of the

value of overwrite and will generate a "Permission denied" error.

 If overwrite is set to False, and the source folder or any of the files
contained in the destination structure exists in the destination structure,

then trappable error 58, "File Already Exists," is generated.

 If an error occurs while copying more than one file, the Copy method exits
immediately, leaving the rest of the files uncopied. There is also no rollback

facility to undo the copies prior to the error.

 If the user has adequate rights, destination can be a network path or share

name. For example:

oFolder.Copy "\\NTSERV1\d$\RootTwo\"

Folder.CreateTextFile Method

The CreateTextFile method creates a new file at the specified location and
returns a TextStream object for that file.

Syntax

object.CreateTextFile(filename, overwrite, unicode)

Arguments

Parameter Description

filename Required. String expression that identifies the file to create.

overwrite

Optional. Boolean value that indicates whether you can overwrite an

existing file. The value is true if the file can be overwritten, false if it
can't be overwritten.

unicode

Optional. Boolean value that indicates whether the file is created as a

Unicode or ASCII file. The value is true if the file is created as a Unicode

file, false if it's created as an ASCII file. If omitted, an ASCII file is

assumed.

Chapter 07 Scripting Quicktest Professional Page 89

Dani Vainstein Working with Files Page 89 of 112

 filename can be a relative or absolute path. Wildcard characters are not
allowed in filename.

 If no path is specified in filename, the script's current drive and directory
are used. If no drive is specified in filename, the script's current drive is

used.

 The default value for overwrite is False.

 If Unicode is set to True, a Unicode file is created; otherwise it's created as
an ASCII text file.

 The default value for Unicode is False.

 If the path specified in filename does not exist, the method fails. To prevent
this error, you can use the FileSystemObject object's FolderExists
method to be sure that the path is valid.

 The newly created text file is automatically opened only for writing. If you
subsequently wish to read from the file, you must first close it and reopen it

in read mode.

 If the file referred to in filename already exists as a read-only file, the

CreateTextFile method fails regardless of the value of overwrite.

 You must use the Set statement to assign the TextStream object to a local
object variable.

 If the user has adequate rights, filename can contain a network path, or
share name. For example:

oFolder.CreateTextFile "\\NTSERV1\RootTest\myFile.doc"

 The CreateTextFile method in the Folder object is identical in operation to
that in the FileSystemObject object.

Folder.Delete Method

The Delete method removes the folder specified by the Folder object and all
its files and subfolders.

Syntax

object.Delete (force)

Arguments

Parameter Description

force
Optional. Boolean value that is True if files or folders with the read-only

attribute set are to be deleted; False (default) if they are not.

Chapter 07 Scripting Quicktest Professional Page 90

Dani Vainstein Working with Files Page 90 of 112

 If any of the files within the folder are open, the method fails with a
"Permission Denied" error.

 The Delete method deletes all the contents of the given folder, including
subfolders and their contents.

 The default setting for force is False. If any of the files in the folder or its
subfolders are set to read-only, the method will fail.

 If force is set to False and any of the files in the folders are set to read-
only, the method fails.

 The Delete method deletes a folder and its files and subfolders
permanently; it does not move the folder or its files and subfolders to the

Recycle Bin.

 If an error occurs while deleting more than one file in the folder, the Delete
method exits immediately, thereby leaving the rest of the folders or files

undeleted. There is also no rollback facility to undo the deletions prior to the

error.

 Unlike the FileSystemObject.DeleteFolder method, which accepts

wildcard characters in the path parameter and can therefore delete multiple

folders, the Delete method deletes only the single folder represented by the
Folder object.

 Immediately after the Delete method executes, the Folders collection

object containing the Folder object is automatically updated. The deleted
folder is removed from the collection, and the collection count is reduced by

one. You shouldn't try to access the deleted Folder object again, and you
should set the local object variable to Nothing.

Folder.Move Method

The Move method moves a folder structure from one location to another.

Syntax

object.Move(destination)

Arguments

Parameter Description

destination Required. The path to the location where the file is to be moved.

Chapter 07 Scripting Quicktest Professional Page 91

Dani Vainstein Working with Files Page 91 of 112

 Wildcard characters can't be used in destination.

 If any of the files within the folder being moved are open, an error is

generated.

 All subfolders and files contained within the source folder are copied to
destination, unless disallowed by the wildcard characters. That is, the Move
method is recursive.

 destination can be either an absolute or a relative path..

 If a fatal system error (like a power failure) occurs during the execution of
this method, the worst that can happen is that the folder is copied to the
destination but not removed from the source. There are no rollback

capabilities built into the Folder.Move method; since, the copy part of this

two-stage process is executed first, the folder can't be lost.

 If an error occurs in the middle of a move operation, the operation is

terminated, and the remaining files and folders in the folder aren't moved.

 If a folder or a file by the same name already exists in destination, the

method generates runtime error 58, "File already exists." To prevent this,
you can use the FileSystemObject.FolderExists and GetAbsolutePath

methods prior to calling the Move method.

 Unlike the FileSystemObject.MoveFolder method, which accepts wildcard
characters in the source parameter and can therefore move multiple folders,

the Move method moves only the single folder represented by the Folder

object and its contents.

 Immediately after the Move method executes, the Folders collection object

containing the Folder object is automatically updated, the moved folder is

removed from the collection, and the collection count is reduced by one. You
shouldn't try to access the moved folder object again from the same Folders

collection object.

 object, the Folder object reference, remains valid after the folder has been

moved. Its relevant properties (the Drive, ParentFolder, Path, and

ShortPath properties, for example) are all updated to reflect the folder's
new path after the move.

 If the user has adequate rights, the destination can be a network path or
share name. For example:

fso.Move "\\NTSERV1\d$\RootTwo\"

Files Collection Object

Figure 18 Files collection

The Files collection object is one of the objects in the File System object model;
for an overview of the model, including the library reference needed to access it,

see Figure 10 - "File System Object Model" on page 52

The Files collection object is a container for File objects that returned by the Files

Chapter 07 Scripting Quicktest Professional Page 92

Dani Vainstein Working with Files Page 92 of 112

property of any Folder object. All files contained in the folder are included in the
Files collection object. You can obtain a reference to a Files collection object using

a code fragment like the following:

Dim oFso, oFiles

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oFiles = oFso.Drives("C:").RootFolder.SubFolders("Windows").Files

This code returns the Files collection for the Windows folder.

You can obtain a reference to an individual File object using the Files collection
object's Item property; this takes the exact filename, including the file extension,

as an argument. To iterate through the collection, you can use the For

Each...Next statement.

 Creatable : No

 Returned By

 Folder.Files property.

Files.Count Property

The Count property returns the number of Files objects in the collection.

Files.Item Property

The Item property returns a File object whose key is file name.

Syntax

object.Item(key)

Arguments

Parameter Description

key Required. The file name.

 Takes the filename (including the file extension) as a parameter and returns
the File object representing the file with that name. Individual File objects
can't be accessed by their ordinal position in the collection. Item is the Files

collection object's default property. The code fragment shown next uses the

Item property to retrieve the autoexec.bat File object.

Option Explicit

Dim oFso, oFiles, oFile

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oFiles = oFso.Drives("C:").RootFolder.Files

Set oFile = oFiles.Item("autoexec.bat")

MsgBox oFile.DateCreated & vbCrLf & _

 oFile.DateLastModified & vbCrLf & _

 oFile.DateLastAccessed

Chapter 07 Scripting Quicktest Professional Page 93

Dani Vainstein Working with Files Page 93 of 112

File Object

Figure 19 File Object

The File object represents a disk file that can be a file of any type and allows you

to interrogate the properties of the file and to move upward in the filesystem
hierarchy to interrogate the system on which the file resides. The process of
instantiating a File object, for example, assigning a reference from the File

object's Item property to a local object variable, doesn't open the file. An open file
represented in the File System object model by a TextStream object, which can
be generated by the File object's OpenAsTextStream method.

There are several methods of retrieving a reference to an existing File object:

If you want to work with a particular file, you can retrieve a reference to it directly

by calling the GetFile method of the FileSystemObject object. For example:

Dim oFso, oFile

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oFile = oFso.GetFile("C:\Documents\MyReport.doc")

Allows you to retrieve a reference to a File object representing the MyReport.doc

file without having to use the File System object model to navigate the filesystem.

If you want to work with a file as a member of a folder or of a set of files, you can

retrieve a reference to a File object that represents it from the Item property of
the Files collection. (The Files collection is returned by the Files property of a
Folder object.) The following code fragment, for instance, retrieves a reference to

a file named MyReport.doc that is a member of the Documents folder:

Chapter 07 Scripting Quicktest Professional Page 94

Dani Vainstein Working with Files Page 94 of 112

Dim oFso, oFile

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oFile = oFso.Drives("C").RootFolder.SubFolders("Rep").Files("Report.doc")

Note that a File object represents an existing file; you cannot create a File object
representing a new file. (You can, however, create a new TextStream object that

represents a new text file by calling the Folder object's CreateTextFile method.)

 Creatable : No

 Returned By

 FileSystemObject.GetFile method

 Files.Item

File.Attributes Property

Figure 20 Attributes bit representation

The Attributes property sets or returns the attributes of files or folders.

Read/write or read-only, depending on the attribute.

Syntax

object.Attributes[= newattributes]

Arguments

Parameter Description

newattributes
Optional. If provided, newattributes is the new value for the attributes of
the specified object.

 More information about bitmaps see Working with Bitmaps on page 12

 As Figure 16 shows, the Scripting Runtime type library defines constants of

the FileAttribute enumeration that can be used in place of their numeric

equivalents. You can use them in your scripts in either of two ways. You can
define the constants yourself by adding the following code to your script or
add the constants on an external vbs file.

Const Normal = 0

Const ReadOnly = 1

Const Hidden = 2

Chapter 07 Scripting Quicktest Professional Page 95

Dani Vainstein Working with Files Page 95 of 112

Const System = 4

Const Directory = 16

Const Archive = 32

Const Alias = 64

Const Compressed = 128

You can determine which flag is set by using a logical AND along with the value
returned by the property and the value of the flag you'd like to test. For

example:

If oFso.Attributes And ReadOnly Then ' File is read-only

To clear a flag, And the value of the Attributes property with a Long in which

the flag you want to clear is turned off. For example, the following code clears a
Folder object's read-only flag:

oFso.Attributes = oFso.Attributes And (Not ReadOnly)

File.DateCreated Property

The DateCreated returns the date and time that the specified file or folder was

created.

 The date and time the file was created.

File.DateLastAccessed Property

The DateLasAccessed returns the date and time that the specified file or

folder was last accessed.

 The date and time the file was last accessed. Whether the property includes

the date and time or only the date depends on the operating system;

Windows 95, Windows 98, and Windows ME, for instance, only return the
date, while Windows NT, Windows 2000, and Windows XP return the date
and time. The property is read-only.

File.DateLastModified Property

The DateLasModified returns the date and time that the specified file or folder
was last modified.

 The date and time the file was last modified; the property is read-only.

Chapter 07 Scripting Quicktest Professional Page 96

Dani Vainstein Working with Files Page 96 of 112

File.Drive Property

The Drive returns the drive letter of the drive or the drive object on which the
specified file or folder resides.

 The property is read-only.

 Drive letter and trailing colon (for example, C:) representing the drive on
which the file is stored.

Option Explicit

Dim fso, oFile, oDrive

Dim sDrive

Set fso = CreateObject("Scripting.FileSystemObject")

Set oFile = fso.GetFolder("C:\My Documents\Report.txt")

sDrive = oFile.Drive ' Returns C:

'--- Or

sDrive = oFile.Drive.DriveLetter ' Returns C

'--- Retrieve the drive object

Set oDrive = oFile.Drive ' Returns the drive object

Figure 21 Drive object

File.Name Property

The Name property Sets or returns the name of a specified file or folder.

 File name, not including path information. For example, the Name of the file

C:\Windows\System32\Scrrun.dll is Scrrun.dll.

File.ParentFolder Property

Chapter 07 Scripting Quicktest Professional Page 97

Dani Vainstein Working with Files Page 97 of 112

The ParentFolder property returns the folder object for the parent of the
specified file or folder.

 The property is read-only.

 Name of the folder in which the file is stored. For example, the
ParentFolder of C:\Windows\System32\Scrrun.dll is Windows.

File.Path Property

The Path property returns the path for a specified file, folder, or drive.

 Returns the full path to the file from the current machine, including drive
letter or network path/share name (for example,

C:\Windows\System32\Scrrun.dll).

 the property is read-only.

 Path is the default property of the File object.

File.ShortName Property

The ShortName property returns the short name used by programs that
require the earlier 8.3 naming convention.

 Returns a DOS 8.3 filename.

File.ShortPath Property

The ShortPath property returns the short path used by programs that require
the earlier 8.3 file naming convention.

 For example, the file C:\Windows\Program Files\MyScript.vbs might have

The ShortName C:\Windows\Progra~1\MyScript.vbs.

File.Size Property

The Size property returns the size, in bytes, of the specified file.

Chapter 07 Scripting Quicktest Professional Page 98

Dani Vainstein Working with Files Page 98 of 112

 The Size property holds a long integer, meaning that it accurately reports
file sizes from 0 to 2,147,483,648 bytes. In previous versions of VBScript,

the property failed to accurately report the size of large files of over 2 GB.

File.Type Property

The Type property returns information about the type of a file or folder.

 Returns a string containing the registered type description as recorded in
the registry. This is the type string displayed for the file in Windows
Explorer (for example, "Microsoft Word Document").

 If a file doesn't have an extension, the type is simply "File." When a file's

type isn't registered, the type appears as the extension and "File."

 The property is read-only.

File.Copy Method

The Copy method copies a specified file or folder from one location to another.

Syntax

object.Copy (destination, overwrite)

Arguments

Parameter Description

destination Required. Destination where the file or folder is to be copied.

overwrite
Optional. Boolean value that is True (default) if existing files or folders

are to be overwritten; False if they are not.

 Wildcard characters can't be used in destination.

 If the destination path is set to read-only, the Copy method fails regardless

of the overwrite setting and generates a "Permission denied" error.

 If overwrite is False and the file already exists in destination, runtime error

58, "File Already Exists," is generated.

 If the user has adequate rights, destination can be a network path or share

name. For example:

MyFile.Copy "\\NTSERV1\d$\RootTwo\"

MyFile.Copy "\\NTSERV1\RootTest"

Chapter 07 Scripting Quicktest Professional Page 99

Dani Vainstein Working with Files Page 99 of 112

File.Move Method

The Move method moves a file from one folder to another.

Syntax

object.Move (destination)

Arguments

Parameter Description

destination Required. The path to the location where the file is to be moved.

 The file represented by object must not be open or an error occurs.

 Wildcard characters can't be used in destination.

 destination can be either an absolute or a relative path.

 If a fatal system error occurs during the execution of this method (like a
power failure), the worst that can happen is that the file is copied to the

destination but not removed from the source. There are no rollback

capabilities built into the File.Move method; however, because the copy
part of this two-stage process is executed first, the file can't be lost.

 If a folder or a file by the same name already exists in destination, the

method generates runtime error 58, "File exists." To prevent this, you can
use the FileSystemObjec.FileExists and GetAbsolutePath methods prior
to calling the Move method.

 Unlike the FileSystemObject.MoveFile method, which accepts wildcard
characters in the path parameter and can therefore move multiple files, the

Move method moves only the single file represented by object.

 As a result of the Move method, the Files collection object originally

containing object of is automatically updated, the file is removed from it,

and the collection count is reduced by one. You shouldn't try to access the
moved file object again in the same Folders collection object.

 The File object reference, remains valid after the file has been moved. Its
relevant properties (the Drive, ParentFolder, Path, and ShortPath
properties, for example) are all updated to reflect the file's new path after

the move.

 If the user has rights, destination can be a network path or share name:

fso.Move "\\NTSERV1\d$\RootTwo\myfile.doc"

File.Delete Method

The Delete method removes the current file.

Syntax

Chapter 07 Scripting Quicktest Professional Page 100

Dani Vainstein Working with Files Page 100 of 112

object.Delete (force)

Arguments

Parameter Description

force
Optional. Boolean value that is True if files or folders with the read-only

attribute set are to be deleted; False (default) if they are not.

 The Delete method deletes a file permanently; it does not move it to the
Recycle Bin.

 If the file is open, the method fails with a "Permission Denied" error.

 The default setting for force is False.

 If force is set to False, and the file is read-only, the method will fail.

 Unlike the FileSystemObject object's DeleteFile method, which accepts

wildcard characters in the path parameter and can therefore delete multiple

files, the Delete method deletes only the single file represented by object.

 As a result of the Delete method, the Files collection object containing

object is automatically updated, the deleted file is removed from the

collection, and the collection count is reduced by one. You shouldn't try to
access the deleted file object again; you should set object to Nothing.

File.OpenAsTextStream Method

The OpenAsTextStream method opens a specified file and returns a
TextStream object that can be used to read from, write to, or append to.

Syntax

object.OpenAsTextStream (iomode, format)

Arguments

Parameter Description

iomode

Optional. Indicates input/output mode. Can be one of three constants:

ForReading, ForWriting, or ForAppending.
For a list of IOMode Arguments see Table 2 on page 111.

format

Optional. One of three Tristate values used to indicate the format of the

opened file. If omitted, the file is opened as ASCII.
For a list of Format Arguments see Table 3 on page 111.

Chapter 07 Scripting Quicktest Professional Page 101

Dani Vainstein Working with Files Page 101 of 112

 The default value for iomode is 1, ForReading.

 The Scripting Runtime type library defines constants of the iomode

enumeration that can be used in place of their numeric equivalents for the
iomode argument. You can use them in your scripts in either of two ways.

You can define the constants yourself by adding the following code to your
script or by adding the constants of IOMode Arguments to an external vbs

file.

 The default value for format is 0 or ASCII (TristateFalse).

 The Scripting Runtime type library defines constants of the Tristate
enumeration that can be used in place of their numeric equivalents for the

format argument. You can use them in your scripts in either of two ways.
You can define the constants yourself by adding the following code to your

script or by adding the constants of Format Arguments to an external vbs

file.

 If another process has opened the file, the method fails with a "Permission
Denied" error.

 The TextStream object is so named for a very good reason: it is designed
to work with text files rather than binary files. Although it is possible to use
the OpenAsTextStream method to open a binary file, an enormous

number of subtle bugs may crop up when you manipulate binary data as
text. Because of this, if you want to work with binary files, you should use
some technology (like the ADO binary file object) or programming language

that's more amenable to processing binary files.

TextStream Object

Most commonly, the TextStream object represents a text file. As of Windows

Script Host 2.0 and VBScript 5.5, however, it also represents any input/output

stream, such as standard input, standard output, and the standard error stream.
Depending on the precise character of the I/O stream, you can open a
TextStream object to read from, append to, or write to the stream. The

TextStream object provides methods to read, write, and close the text file or I/O

stream.

When dealing with files, note that the TextStream object represents the file's

contents or internals; the File object represents the file's externals or the file as
an object in the filesystem.

The TextStream object is one of the objects in the File System object model; for

an overview of the model, including the library reference needed to access it, see

Figure 10 - "File System Object Model" on page 52

The availability of TextStream object properties depends on the precise character
of the TextStream object; some properties are available only when the stream is
opened in read mode (indicated by an R in the Availability field); others are

available in both read and write modes (indicated by a RW in the Availability field).
All of the following TextStream object properties are read-only:

Chapter 07 Scripting Quicktest Professional Page 102

Dani Vainstein Working with Files Page 102 of 112

 Creatable : No

 Returned By

 File.OpenTextStream Method

 FileSystemObject.CreateTextFile Method

 FileSystemObject.OpenTextFile Method

TextStream.AtEndOfLine Property

The AtEndOfLine property is a flag denoting whether the end-of-a-line marker

has been reached (True) or not (False). Relevant only when reading a file.

 When reading a standard input stream from the keyboard, the end of a line

is indicated by pressing the Enter key.

 The AtEndOfLine property applies only to TextStream files that are open

for reading; otherwise, an error occurs.

TextStream.AtEndOfStream Property

Description

The AtEndOfStream property returns a Boolean value indicating whether the

end of an input stream has been reached.

 When reading a standard input stream from the keyboard, the end of a line
is indicated by pressing the Enter key.

TextStream.Column Property

The Column property returns a read-only property that returns the column

number of the current character position in a TextStream file.

 Returns the column number position of the file marker. The first column

position in the input stream and in each row is 1.

 Examining the value of the Column property is most useful in input streams

after calls to the TextStream object's Read and Skip methods. Although it
is less useful for output streams, it can be used after a call to the

TextStream object's Write method.

TextStream.Line Property

The Line property returns the current line number in a TextStream file.

Chapter 07 Scripting Quicktest Professional Page 103

Dani Vainstein Working with Files Page 103 of 112

 Returns the line number position of the file marker. Lines in the text stream

are numbered starting at 1.

 Unless the end of the text stream has been reached, the value of the Line
property is incremented after calls to the ReadAll, ReadLine, and
SkipLine methods. Similarly, in output streams, it is incremented after calls

to the WriteLine and WriteBlankLines methods.

TextStream.Close Method

The Close method closes the current TextStream object

 Although calling the Close method does not invalidate the object reference,

you shouldn't try to reference a TextStream object that has been closed.

 After closing the TextStream object, set object to Nothing.

 If you are writing to a file-based text stream, text is automatically written to
the file. You do not have to call the Save method to commit changes to a

disk file before calling the Close method.

TextStream.Read Method

The Read method reads a specified number of characters from a TextStream

file and returns the resulting string.

Syntax

object.Read (characters)

Arguments

Parameter Description

characters Required. Number of characters you want to read from the file.

 Files opened for writing or appending can't be read; you must first close the

file and reopen it using the ForReading constant.

 After the read operation, the file pointer advances Characters characters,
unless the end of the file is encountered.

 If the number of characters available to be read are less than characters, all

characters will be read.

 When reading the standard input stream from the keyboard, program
execution pauses until an end-of-line or end-of-stream character is
encountered. However, only the first Characters characters of the stream

are read. If at least Characters characters are available in the input stream

Chapter 07 Scripting Quicktest Professional Page 104

Dani Vainstein Working with Files Page 104 of 112

for subsequent read operations, program execution does not pause to wait
for further keyboard input. The usual technique is to process keystrokes in a

loop until the end-of-stream marker is encountered.

TextStream.ReadAll Method

The ReadAll method reads the entire file or input stream into memory.

Syntax

object.ReadAll ()

 For large files, use the ReadLine or Read methods to reduce the load on
memory resources.

 Files opened for writing or appending can't be read; you must first close the
file and reopen it using the ForReading constant.

 When used to read the standard input stream from the keyboard, the
ReadAll method pauses program execution and polls the keyboard until the

AtEndOfStream symbol is encountered. For this reason, the ReadAll

method should not be executed repeatedly in a loop.

TextStream.ReadLine Method

The ReadLine method reads a line of the text file or input stream into memory,

from the start of the current line up to the character immediately preceding the

next end-of-line marker.

 Files opened for writing or appending can't be read; you must first close the

file and reopen it using the ForRead constant.

 The ReadLine method causes the file pointer to advance to the beginning
of the next line, if there is one.

 When used to retrieve standard input from the keyboard, the ReadLine

method pauses program execution and waits until the end-of-line character
(i.e., the Enter key) has been pressed. Unless your script expects to retrieve
just one line of input, it's best to call the ReadLine method repeatedly in a

loop.

TextStream.Skip Method

The Skip method skips a specified number of characters when reading a

TextStream file.

Syntax

Chapter 07 Scripting Quicktest Professional Page 105

Dani Vainstein Working with Files Page 105 of 112

object.Skip (characters)

Arguments

Parameter Description

characters Required. Number of characters to skip when reading a file.

 As a result of the skip operation, the file pointer is placed at the character

immediately following the last skipped character.

 The Skip method is available only for input streams, that is, for files or

streams opened in ForReading mode.

TextStream.SkipLine Method

The SkipLine method ignores the current line when reading from a text file.

 The SkipLine method is available only for files opened in ForReading
mode.

 After the SkipLine method executes, the internal file pointer is placed at
the beginning of the line immediately following the skipped line, assuming

that one exists.

TextStream.Write Method

The Write method writes a specified string to a TextStream file.

Syntax

object.Write (string)

Arguments

Parameter Description

string Required. The text you want to write to the file.

 The file marker is set at the end of string. As a result, subsequent writes to

the file adjoin each other, with no spaces inserted. To write data to the file
in a more structured manner, use the WriteLine method.

TextStream.WriteBlankLines Method

The WriteBlankLines method writes a specified number of newline characters

to a TextStream file.

Chapter 07 Scripting Quicktest Professional Page 106

Dani Vainstein Working with Files Page 106 of 112

Syntax

object.WriteBlankLines (lines)

Arguments

Parameter Description

lines Required. Number of newline characters you want to write to the file.

Example

oTxtFile.Write ("This is line 1.")

oTxtFile.Write ("This is line 2.")

The resulting text file looks like this:

This is line 1.This is line 2.

TextStream.WriteLine Method

The Write method writes a specified string and newline character to a

TextStream file.

Syntax

object.WriteLine ([string])

Arguments

Parameter Description

string
Optional. The text you want to write to the file. If omitted, a newline

character is written to the file.

 Writes a string immediately followed by a newline character to a text file.

Example

oTxtFile.WriteLine ("This is line 1.")

oTxtFile.WriteLine ("This is line 2.")

The resulting text file looks like this:

This is line 1.

This is line 2.

Q&A

How to Enumerate Folders and Folder Properties?

The primary advantage of using scripts for file system management is the fact that
scripts can carry out tasks that would be too tedious and time-consuming to

perform using either the graphical user interface or a command-line tool. For
Example, you have to test that requires you to verify the following in various

Chapter 07 Scripting Quicktest Professional Page 107

Dani Vainstein Working with Files Page 107 of 112

clients:

 A folder named Scripts exists on each of client.

 The Scripts folder is hidden.

 The Scripts folder is marked as read-only.

 The Scripts folder is compressed.

Scripts can be used to carry out tasks such as these because, within the Windows

shell, folders are actually COM objects. As COM objects, folders have properties
that can be retrieved, properties that answer questions such as:

 Is this folder hidden?

 Is this folder read-only?

 Is this folder compressed?

You can retrieve the properties of any folder in the file system using the
Win32_Directory class. More information about the WMI object, properties an

methods can be found in: Win32_Directory Class on page 41

To retrieve the properties for a single folder, construct a Windows Query Language
(WQL) query for the Win32_Directory class, making sure that you include the
name of the folder. For example, this query binds to the folder D:\Archive:

" SELECT * FROM Win32_Directory WHERE Name = 'D:\\Archive'"

Remark: When specifying a file or folder name in a WQL query, be sure you use
two backslashes (\\) to separate path components.

The following sample code contains a script that retrieves properties for the folder

C:\Scripts. To carry out this task, the script must perform the following steps:

1. Create a variable to specify the computer name.

2. WMI Namespace

a. Use a GetObject call to connect to the WMI namespace
root\cimv2, and set the impersonation level to "impersonate."

b. Use a GetObject method call to the WMI namespace winmgmts:

3. Query

a. Use the ExecQuery method to query the Win32_Directory class.

b. Use the Get method to query the Win32_Directory class

4. To limit data retrieval to a specified folder, a Where clause is included
restricting the returned folders to those where Name equals C:\\Scripts.

You must include both backslashes (\\) in the specified name.

Chapter 07 Scripting Quicktest Professional Page 108

Dani Vainstein Working with Files Page 108 of 112

Set oFolder = GetObject("winmgmts:").Get _

 ("Win32_Directory.Name='F:\\Music Library'")

MsgBox "Archive: " & oFolder.Archive

MsgBox "Caption: " & oFolder.Caption

MsgBox "Compressed: " & oFolder.Compressed

MsgBox "Compression method: " & oFolder.CompressionMethod

MsgBox "Creation date: " & oFolder.CreationDate

MsgBox "Encrypted: " & oFolder.Encrypted

MsgBox "Encryption method: " & oFolder.EncryptionMethod

MsgBox "Hidden: " & oFolder.Hidden

MsgBox "In use count: " & oFolder.InUseCount

MsgBox "Last accessed: " & oFolder.LastAccessed

MsgBox "Last modified: " & oFolder.LastModified

MsgBox "Name: " & oFolder.Name

MsgBox "Path: " & oFolder.Path

MsgBox "Readable: " & oFolder.Readable

MsgBox "System: " & oFolder.System

How to Enumerate All the Folders on a Computer?

If you need to enumerate all the folders on a computer, be aware that this query

can take an extended time to complete. For example, on a Windows 2000-based
computer with 5,788 folders, a script that returns the name of each folder required
429 seconds to complete.

The next example contains a script that returns a list of all of the folders on a
computer. To carry out this task, the script must perform the following steps:

 Use a GetObject call to connect to the WMI namespace winmgmts:

 Use the InstancesOf method to query the Win32_Directory class.

 This returns a collection of all the folders on the computer.

 For each folder in the collection, echo the folder name.

Set colFolders = GetObject("winmgmts:").InstancesOf("Win32_Directory")

For Each oFolder in colFolders

 Reporter.ReportEvent micGeneral, "Name", oFolder.Name

Next

How to Enumerate the Subfolders of a Folder?

Instead of enumerating all the folders and subfolders on a computer, a more
common task is examining the subfolders for a single folder. For example, you

might have a folder named Users, and you might encourage your users to store
their documents in this folder. Enumerating the subfolders within the Users folder
can tell you which users have set up personal folders within that parent folder.

The Win32_Subdirectory class is an association class that allows you to

associate a folder with its subfolders (or with its parent folder). Association classes
typically have very few properties; their purpose is simply to derive the
associations between objects. The Win32_Subdirectory class, for example, has

only two properties

Chapter 07 Scripting Quicktest Professional Page 109

Dani Vainstein Working with Files Page 109 of 112

 GroupComponent. Returns the parent folder of a folder.

 PartComponent. Returns the first-level subfolders of a folder

Figure 22 Sample Folder Structure

How to Rename All the Files in a Folder?

Can i read a text file from the bottom up?

The FileSystemObject is extremely useful, but it also has its limitations; one of

the major limitations is the fact that it can only read a file from top to bottom. In

this case, what we do is go ahead and read the file from top to bottom, beginning
with line 1 and ending with line whatever. However, rather than immediately
echoing these lines to the screen, we’ll store them in an array, with each line in

the file representing one element in the array.

Option Explicit

Dim arrFileLines()

Dim oFso, oFile

Dim i : i = 0

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oFile = oFso.OpenTextFile("C:\Sample.txt", 1)

Do Until oFile.AtEndOfStream

 Redim Preserve arrFileLines(i)

 arrFileLines(i) = oFile.ReadLine

 i = i + 1
Loop

oFile.Close

For i = Ubound(arrFileLines) to LBound(arrFileLines) Step -1

 MsgBox arrFileLines(i)

Next

Set oFso = Nothing

Chapter 07 Scripting Quicktest Professional Page 110

Dani Vainstein Working with Files Page 110 of 112

How can i count the number of lines in a text file?

Well, we begin by using the FileSystemObject to open the file for reading. Next
we simply read the entire text file, using the ReadAll method. When we use

ReadAll, we read in every line of the text file. Because the FileSystem object can
only read from the beginning of a file to the end of the file, that means that when

ReadAll is finished we must be on the very last line of the file; it’s impossible for us

to be anywhere else. Consequently, all we have to do is echo the value of the Line
property, which reports the line number of the current line. Because we are on the

last line, the Line property in this case also tells us the number of lines in the file.

Simple.

Scripting Guys Remark: Of course, you might be thinking, “Oh, sure, open up

and read an entire file just to get the line count? How long will that take?”

Surprisingly enough, not very long at all. We tested this script on a text file with
just over 20,000 lines. On a regular old laptop computer (2.39 GhZ, 512 MB of

RAM) the script took 1 second to complete. Your results might vary, but they

probably won’t vary by much.

Function NumberOfLines (ByVal sFileName)

 Const ForReading = 1

 Dim oFso, oTxtFile

 Set oFso = CreateObject("Scripting.FileSystemObject")

 Set oTxtFile = oFso.OpenTextFile(sFileName, ForReading)

 oTxt.ReadAll

 NumberOfLines = oTxtFile.Line

 Set oTxtFile = Nothing : Set oFso = Nothing

End Function

How can i count the number of times a word appears

in a log file?

Your first thought was to use the InStr function to see if for example, the word
Failure appears anywhere in each line of the log file; you could then keep a

running tally of the number of times you found the word. The simplest and most

effective way, is to use regular expression. For more details see Chapter 05

Function MatchesFound (ByVal sFileName, ByVal sString, ByVal bIgnoreCase)

 Const FOR_READING = 1

 Dim oFso, oTxtFile, sReadTxt, oRegEx, oMatches

 Set oFso = CreateObject("Scripting.FileSystemObject")

 Set oTxtFile = oFso.OpenTextFile(sFileName, FOR_READING)

 sReadTxt = oTxtFile.ReadAll

 Set oRegEx = New RegExp

 oRegEx.Pattern = sString

 oRegEx.IgnoreCase = bIgnoreCase

 oRegEx.Global = True

 Set oMatches = oRegEx.Execute(sReadTxt)

 MatchesFound = oMatches.Count

 Set oTxtFile = Nothing : Set oFso = Nothing : Set oRegEx = Nothing

End Function

Chapter 07 Scripting Quicktest Professional Page 111

Dani Vainstein Working with Files Page 111 of 112

Appendix 5.A

IOMode Arguments

Constant Value Modality

ForReading 1 Open a file for reading only. You can't write to this file.

ForWriting 2 Open a file for writing.

ForAppending 8 Open a file and write to the end of the file.

Table 2 IOMode Arguments

Format Arguments

Constant Value Modality

TristateTrue -1 Open the file as Unicode.

TristateFalse 0 Open the file as ASCII.

TristateUseDefault -2 Open the file using the system default.

Table 3 - Format Arguments

DriveType Constants

Constant Value Description

Hidden 2
Indicates that the folder is hidden, and not visible by default in My Computer
or Windows Explorer.

System 4
Indicates that the folder is a System folder. In general, it is a good idea not to
modify the properties of a system folder.

Directory 16
Standard value applied to all folders. All folders accessed by the
FileSystemObject will have, at a minimum, the bit value 16.

Archive 32

Archive bit used by backup programs to determine the files and folders that
need to be backed up. Enabling the archive bit will ensure that the folder is
backed up during the next incremental backup. Disabling the archive bit will
prevent the folder from being backed up during the next incremental backup.

Compressed 2048 Indicates whether Windows compression has been used on the folder.

Table 4 - DriveType Constants

File Attributes Used by the FileSystemObject

Constant Value Description

Normal 0 File with no attributes set.

Read-only 1 File can be read but cannot be modified.

Hidden 2 File is hidden from view in Windows Explorer or My Computer.

System 4 File is needed by the operating system.

Archive 32 File is flagged as requiring backup.

Alias 64 File is a shortcut to another file.

Compressed 2048 File has been compressed.

Chapter 07 Scripting Quicktest Professional Page 112

Dani Vainstein Working with Files Page 112 of 112

Table 5 - File Attributes Used by the FileSystemObject

